Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,n^4-n^2=n^2\left(n^2-1\right)=n^2\left(n-1\right)\left(n+1\right)\)
\(=n.n\left(n-1\right)\left(n+1\right)\)
xét \(n=2k\)
\(n.n=4k⋮4\)
xét \(n=2k+1\)
\(\left(n-1\right)\left(n+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮4\)
\(< =>n.n\left(n-1\right)\left(n+1\right)⋮4\)
\(n^4-n^2⋮4< =>ĐPCM\)
Bài 50:
\((5x+3y)^2=25x^2+30xy+9y^2\)
Bài 51:
\((\frac{1}{3}xy^m+4x^2y)^2=\frac{1}{9}x^2y^{2m}+2.\frac{1}{3}xy^m.4x^2y+16x^4y^2\)
\(=\frac{1}{9}x^2y^{2m}+\frac{}{3}x^3y^{m+1}+16x^4y^2\)
Bài 54:
\(25x^2y^4+30xy^2z+9z^2=(5xy^2)^2+2.(5xy^2).(3z)+(3z)^2\)
\(=(5xy^2+3z)^2\)
Bài 55:
\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=(\frac{4}{3}x)^2+2.(\frac{4}{3}x).(\frac{3}{2}yz^2)+(\frac{3}{2}yz^2)^2\)
\(=(\frac{4}{3}x+\frac{3}{2}yz^2)^2\)
Bạn chỉ cần nhớ rõ hằng đẳng thức đáng nhớ số 1 là được.
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)
a) \(73^2-27^2=\left(73+27\right)\left(73-27\right)=100.46=4600\)
b) \(55^2+20^2-25^2+40.45=\left(55^2-25^2\right)+\left(20^2+40.45\right)\)
\(=\left(55-25\right)\left(55+25\right)+\left(40.10+40.45\right)=30.80+40.55\)
\(=40\left(60+55\right)=40.115=4600\)
Bài 1:
Ta có:
\(p=x^4+2^{4n+2}=(x^2)^2+(2^{2n+1})^2=(x^2+2^{2n+1})^2-2.x^2.2^{2n+1}\)
\(=(x^2+2^{2n+1})^2-(x.2^{n+1})^2\)
\(=(x^2+2^{2n+1}+x.2^{n+1})(x^2+2^{2n+1}-x.2^{n+1})\)
Từ đây ta thấy để p là số nguyên tố thì bắt buộc một trong hai thừa số trên phải bằng một
Vì \(x^2+2^{2n+1}+x.2^{n+1}> x^2+2^{2n+1}-x.2^{n+1}\) nên
\(x^2+2^{2n+1}-x.2^{n+1}=1\)
\(\Leftrightarrow 2x^2+2^{2n+2}-2.x.2^{n+1}=2\)
\(\Leftrightarrow x^2+(x-2^{n+1})^2=2\)
\(\Rightarrow x^2=2-(x-2^{n+1})^2\leq 2\Rightarrow x\leq \sqrt{2}\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Nếu \(x=0\): \(\Rightarrow 2^{2n+1}=1=2^0\Rightarrow 2n+1=0\) (vô lý với n là số tự nhiên)
Nếu \(x=1\Rightarrow 1+2^{2n+1}-2^{n+1}=1\)
\(\Leftrightarrow 2^{2n+1}-2^{n+1}=0\Leftrightarrow 2n+1=n+1\)
\(\Leftrightarrow n=0\)
Khi đó \(p=5\in \mathbb{P}\)
Vậy \((x,n)=(1;0)\)
Bài 3:
a)
\(p=x^4+x^2-6x+9\)
Áp dụng BĐT AM-GM cho các số không âm:
\(x^4+x^2+1+1+1+1\geq 6\sqrt[6]{x^6}=6|x|\geq 6x\)
\(\Leftrightarrow x^4+x^2+4\geq 6x\)
Suy ra \(p=(x^4+x^2+4)-6x+5\geq 6x-6x+5=5\)
Vậy \(p_{\min}=5\Leftrightarrow \left\{\begin{matrix} x^4=x^2=1\\ x\geq 0\end{matrix}\right.\Leftrightarrow x=1\)
b) Phản chứng
Giả sử \(n^2+11n+39\vdots 49\)
Khi đó suy ra \(n^2+11n+39\vdots 7\)
\(\Leftrightarrow n^2+11n+39-7n-35\vdots 7\)
\(\Leftrightarrow n^2+4n+4\vdots 7\)
\(\Leftrightarrow (n+2)^2\vdots 7\)
\(\Leftrightarrow n+2\vdots 7\) (do 7 là số nguyên tố)
Khi đó đặt \(n+2=7t\Rightarrow n^2+11n+39=(7t-2)^2+11(7t-2)+39\)
\(\Leftrightarrow n^2+11n+39=49t^2+49t+21\) không chia hết cho $49$
Điều này mâu thuẫn với điều ta đã giả sử.
Do đó điều giả sử là sai. Hay \(n^2+11n+39\not\vdots 49\)
\(=\dfrac{a+b+a-b}{a^2-b^2}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{2a^3+2a^2b^2+2a^3-2ab^2}{a^4-b^4}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{4a^7+4a^3b^4+4a^7-4a^3b^4}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{8a^7}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{8a^{15}+8a^7b^8+8a^{15}-8a^7b^8}{a^{16}-b^{16}}=\dfrac{16a^{15}}{a^{16}-b^{16}}\)
Trả lời:
Ta có: ( 4n + 1 )2 - 9
= ( 4n + 1 - 3 ) ( 4n + 1 + 3 )
= ( 4n - 2 ) ( 4n + 4 )
= 4 ( n - 1/2 ) 4 ( n + 1 )
= 16 ( n - 1/2 ) ( n + 1 ) \(⋮\) 16 (đpcm)