Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-10x+5\)
\(A=x^2-10x+25-20\)
\(A=\left(x-5\right)^2-20\ge-20\)
Min A = -20 \(\Leftrightarrow x=5\)
b) \(B=3x^2-6x+11\)
\(B=3\left(x^2-2x+1\right)+8\)
\(B=3\left(x-1\right)^2+8\ge8\)
Min B = 8\(\Leftrightarrow x=1\)
a) \(A=x^2-10x+5=\left(x^2-10x+25\right)-20\)
\(=\left(x-5\right)^2-20\ge-20\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy \(Min_A=-20\Leftrightarrow x=5\)
b) \(B=3x^2-6x+11=3\left(x^2-2x+1\right)+8\)
\(=3\left(x-1\right)^2+8\ge8\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=8\Leftrightarrow x=1\)
c) \(C=8x^2+10x-30=8\left(x^2-\frac{5}{4}x+\frac{25}{64}\right)-\frac{265}{8}\)
\(=8\left(x-\frac{5}{8}\right)^2-\frac{265}{8}\ge-\frac{265}{8}\)
Dấu "=" xảy ra khi: \(\left(x-\frac{5}{8}\right)^2=0\Rightarrow x=\frac{5}{8}\)
Vậy \(Min_C=-\frac{265}{8}\Leftrightarrow x=\frac{5}{8}\)
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)