K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2021

\(2\left(x-1\right)-5\left(x+2\right)=-10\\ \Rightarrow2x-2-5x-10=-10\\ \Rightarrow-3x=2\\ \Rightarrow x=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\)

23 tháng 6 2018

\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)

\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)

\(\frac{-3}{2}-2x=\frac{-7}{4}\)

\(2x=\frac{-7}{4}+\frac{-3}{2}\)

\(2x=\frac{-13}{4}\)

\(x=\frac{-13}{4}:2\)

\(x=\frac{-13}{4}.\frac{1}{2}\)

\(x=\frac{-13}{8}\)

11 tháng 4 2019

Bài 1a) 

\(P\left(x\right)=x^{2018}+4x^2+10\)

VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)

\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)

Hay \(P\left(x\right)\ge10\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

11 tháng 4 2019

Bài 1b)

\(M\left(x\right)=x^2+x+1\)

\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

10 tháng 9 2016

\(a,2^{x+1}=3^y=12^x\Rightarrow2^{x+1}.3^y=2^{2x}.3y\)

\(\Rightarrow\frac{2^x}{2^{x+1}}=\frac{3^y}{3^x}\Rightarrow2^{2-x-x-1}=3^{y-x}\)

27 tháng 6 2017

giá trị lớn nhất của A=10 khi x=-7

giá trị lớn nhất của B=2015 khi x=5

giá trị lớn nhất của C=15 khi x=2; y=-3

20 tháng 2 2018

a, 2.(4x-3)-3(x+5)+4(x-10)=5(x+2)

    2.4x-2.3-3.x+3.5+4x-4.10=5x+5.2

    8x-6-3x+15+4x-40=5x-10

    8x-3x+4x-5x-6-15-40-10=0

    4x-71=0

    4x=71

     x=71:4

    x=71/4

7 tháng 7 2018

1, A = x^2 + 6x + 2018

       = x^2 + 2.x.3 + 3^2 - 3^2 + 2018

       = (x + 3)^2 -3^2 + 2018

       = (x + 3)^2 + 2009

       =>. GTNN of A là 2009

Mình cũng không chắc nữa, nếu đúng thì các ý khác bạn tham khảo nhé

7 tháng 7 2018

\(A=x^2+6x+2018\)

\(A=\left(x^2+6x+9\right)+2009\)

\(A=\left(x+3\right)^2+2009\)

Mà  \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2009\)

Dấu "=" xảy ra khi :  \(x+3=0\Leftrightarrow x=-3\)

Vậy ...

\(B=x^2-5x+20\)

\(B=\left(x^2-5x+\frac{25}{4}\right)+\frac{55}{4}\)

\(B=\left(x-\frac{5}{2}\right)^2+\frac{55}{4}\)

Mà  \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge\frac{55}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy ...

\(C=x^2+5x+10\)

\(C=\left(x^2+5x+\frac{25}{4}\right)+\frac{15}{4}\)

\(C=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow C\ge\frac{15}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy ...

\(D=x^2+10x-30\)

\(D=\left(x^2+10x+25\right)-55\)

\(D=\left(x+5\right)^2-55\)

Mà  \(\left(x+5\right)^2\ge0\forall x\)

\(\Rightarrow D\ge-55\)

Dấu "=" xảy ra khi :  \(x+5=0\Leftrightarrow x=-5\)

Vậy ...