Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{2a}{3}=\frac{3b}{4}\Rightarrow\frac{2a}{3}:6=\frac{3b}{4}:6\)
\(\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a}{27}=\frac{b}{24}\) ( 1 )
\(\frac{1}{4}\left(2b\right)=\frac{1}{5}\left(-3c\right)\Rightarrow\frac{b}{2}=\frac{-3c}{5}\Rightarrow\frac{b}{2}:3=-\frac{3c}{5}:3\)
\(\Rightarrow\frac{b}{6}=\frac{c}{-5}\Rightarrow\frac{b}{24}=\frac{c}{-20}\) (2 )
Từ (1) và ( 2) có:
\(\frac{a}{27}=\frac{b}{24}=\frac{c}{-20}\)
\(\Rightarrow\frac{a}{27}=\frac{2b}{48}=\frac{3c}{-60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{27}=\frac{2b}{48}=\frac{3c}{-60}=\frac{a-2b+3c}{27-48+\left(-60\right)}=\frac{1}{-81}\)
\(\Rightarrow\frac{a}{27}=\frac{b}{24}=\frac{c}{-20}=-\frac{1}{81}\)
\(\Rightarrow a-b-c=-\frac{1}{81}\left[27-24-\left(-20\right)\right]=-\frac{1}{81}.23=-\frac{23}{81}\)
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
+ Từ \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow3a-2b=c\) và \(3a-c=2b\)
+ Tương tự ta cũng có \(3b-2c=a\) và \(3b-a=2c\)
Và \(3c-2a=b\); \(3c-b=2a\)
Thay vào P
\(P=\frac{c.a.b}{2.b.2.c.2.a}=\frac{1}{8}\)
Bài 1:
a) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}\) ( tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a}{b}=\frac{2a+c}{2b+d}\left(đpcm\right)\)
b) ta có: \(\frac{a}{b}=\frac{2a+c}{2b+d}\left(pa\right)\)
\(\Rightarrow a.\left(2b+d\right)=b.\left(2a+c\right)\left(đpcm\right)\)
Bạn Công Chúa Ori ơi ! Câu b sai rồi ( nhầm đề) . Theo mình là như này
b) Ta có \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{2a}{2c}\)=\(\frac{3c}{3d}\)=\(\frac{2a+3c}{2b+3d}\)
suy ra \(\frac{a}{b}\)=\(\frac{2a+3c}{2b+3d}\)
suy ra a.(2b+3d)=b.(2a+3c)
đặt a/b =c/d =k
=> a=bm , c=dm
=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)
=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)
Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d
câu 2 tương tự nha
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)