Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)
Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)
Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)
2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)
Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)
Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0
Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)
\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)
Như vậy, \(n< 5\)
Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)
Với \(n=2;1!+2!=5\left(KTM\right)\)
Với \(n=3;1!+2!+3!=9\left(TM\right)\)
Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)
Vậy n bằng 1 hoặc 3
3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)
Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố)
\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)
\(\Leftrightarrow ab+b^2+bc+bd=pb\)
\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)
Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)
Vậy a+b+c+d là hợp số
Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)
\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm)
Bài 1:
a) \(2^x+2^{x+3}=144\)
\(\Leftrightarrow 2^x+2^3.2^x=144\Leftrightarrow 2^x(1+2^3)=144\)
\(\Leftrightarrow 2^x=16\Leftrightarrow 2^x=2^4\Rightarrow x=4\)
b)
\(3^{2x+2}=9^{x+3}\)
\(\Leftrightarrow 3^{2x+2}=(3^2)^{x+3}=3^{2(x+3)}\)
\(\Rightarrow 2x+2=2(x+3)\Leftrightarrow 2=6\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn.
Bài 2:
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow 3A=3^2+3^3+3^4+..+3^{101}\)
Trừ theo vế:
\(3A-A=3^{101}-3\)
\(\Rightarrow 2A=3^{101}-3\)
Khi đó:
\(2A+3=3^n\Leftrightarrow 3^{101}-3+3=3^n\Leftrightarrow 3^{101}=3^n\)
\(\Rightarrow n=101\)
1 /
abc = 198
2 /
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn
Vậy a.bc = 1,25
3 /
a ) Nhận thấy
5^b tận cùng là 5
mà 2^a + 124 tận cùng cũng phải là 5
=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0
=> a = 0
ta có
2^0 + 124 = 5^b
=> 125 -= 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b = 3
b ) nhận thấy
cứ nhân 5 lần số 3 với nhau tận cùng là 3
mà có : 101 : 5 = 20 ( dư 1 )
sau khi có tận cùng là 3 ta nhân thêm 1 số 3 nữa được tận cùng là 9
4 /
a ) = 315
b ) = 216
c ) = 0 , 015555555555554
d ) = 2
nhé !
Bài 2 :
a/ Ta có : 201x chia hết cho 2
=> x phải là số chẵn (*)
Lại có : 201x chia hết cho 3
=> 2+0+1+x chia hết cho 3
=> 3+ x chia hết cho 3
Mà x thuộc{0;1;2;3;4;5;6;7;8;9}
=> Để 3+x chia hết cho 3 thì x phải thuộc {3;6; 9}
Có x là số chẵn(theo* )
=> x=6
b/ Ta có : x thuộc ƯC (13; 39)
Có : 13 =13 ;39=13.3
=> ƯCLN (13;39) = 13
=> ƯC ( 13; 39) =Ư(13)= {1;13}
=> x thuộc {1; 13}
Mà x > 1
=> x =13
Mấy chỗ thuộc bạn thay bằng kí hiệu hộ mình nhé !
Còn bài 1 khó quá mình hông biết làm
a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25