K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

các bạn giúp mình cái nhé mình cảm ơn

29 tháng 10 2023

$B=1+2+3+4+...+2022+2023$

Số các số hạng của B là:

$(2023-1):1+1=2023$ (số)

Tổng B bằng:

$(2023+1)\cdot2023:2=2047276$

$---$

$C=2+4+6+...+98+100$

Số các số hạng của C là:

$(100-2):2+1=50$ (số)

Tổng C bằng:

$(100+2)\cdot50:2=2550$

$---$

$D=1+3+5+...+97+99$

Số các số hạng của D là:

$(99-1):2+1=50$ (số)

Tổng D bằng:

$(99+1)\cdot50:2=2500$

$---$

$E=10+14+18+...+98+102$

Số các số hạng của E là:

$(102-10):4+1=24$ (số)

Tổng E bằng:

$(102+10)\cdot24:2=1344$

$Toru$

29 tháng 10 2023

Số lượng số hạng: 

\(\left(2023-1\right):1+1=2023\) (số hạng) 

Tổng B là:

\(B=\left(2023+1\right)\cdot2023:2=2047276\)

_______________

Số lượng số hạng là:

\(\left(100-2\right):2+1=50\) (số hạng)

Tổng C là: 

\(C=\left(100+2\right)\cdot50:2=2550\)

________________

Số lượng số hạng là:

\(\left(99-1\right):2+1=50\) (số hạng)

Tổng D là:

\(D=\left(99+1\right)\cdot50:2=2500\) 

________________

Số lượng số hạng là:

\(\left(102-10\right):4+1=24\) (số hạng)

Tổng E là:

\(E=\left(102+10\right)\cdot24:2=1334\)  

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

12 tháng 6 2017

a} 1 + 2 + 3 + 4 + .... + 97 + 98 + 99 

Ta thấy dãy trên là dãy cách đều 1 đơn vị 

Số số hạng của dãy đó là: 

(99 - 1) : 1 + 1  = 99 (số hạng)

Tổng của dãy là: 

(1 + 99) x 99 : 2 = 4950 

Đs: 4950 

b} 2 + 4 + 6 + 8 + ... + 100 + 102 

Tương tự như ý a dãy này là dãy cách đều 2 đơn vị 

Số số hạng của dãy đó là: 

(102  - 2) : 2 + 1 = 51 (số)

Tổng của dãy là: 

(2 + 102) x 51 : 2 = 2652

Đs: 2652 

12 tháng 6 2017

a) Dãy số trên hơn kém nhau 1 đơn vị.

2-1=1

4-3=1

--------

99-98=1

Số số hạng của dãy số trên là:

(99-1) :1 + 1= 99 ( số hạng )

Tổng là:

( 99 + 1) x 99: 2= 4950

Đ/s-------

b) Dãy số trên hơn kém nhau 2 đv

4-2=2

6-4=2

---------

102-100=2

Số số hạng của dãy số trên là:

(102 - 2 ): 2 + 1= 51 ( số hạng)

Tổng là:

( 102 + 2) x 51 : 2 = 2652

Đ/s-------------

5 tháng 8 2017

Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là:    ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)

24 tháng 8 2015

AI MUỐN KẾT BẠN VỚI MÌNH KHÔNG VẬY ?

24 tháng 8 2015

ố 29 phút trước tui làm gì lên

2 tháng 11 2023

hmmmmmmmmmmmmmmmmmmmmmmm 

2 tháng 5 2017

\(M=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

cộng vào mỗi phân số trong 98 phân số sau,trừ phân số cuối đi 98 , ta được :

\(M=1+\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{2}{98}+1\right)+\left(\frac{1}{99}+1\right)\)

\(M=\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

chuyển phân số \(\frac{100}{100}\)ra sau , ta được :

\(M=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}\)

\(M=100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)

\(\Rightarrow\frac{M}{N}=\frac{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}=100\)

3 tháng 5 2017

Thank bn na !!!