K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{1}{x} + \frac{2}{{x + 1}} + \frac{3}{{x + 2}} - \frac{1}{x} - \frac{2}{{x - 1}} - \frac{3}{{x + 2}}\\ = \left( {\frac{1}{x} - \frac{1}{x}} \right) + \left( {\frac{2}{{x + 1}} - \frac{2}{{x - 1}}} \right) + \left( {\frac{3}{{x + 2}} - \frac{3}{{x + 2}}} \right)\\ = 0 + \frac{2}{{x + 1}} - \frac{2}{{x - 1}} + 0\\ = \frac{{2\left( {x - 1} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{2{\rm{x}} - 2 - 2{\rm{x}} - 2}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\end{array}\)

\(\begin{array}{l}b)\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{3}{{{x^2} - 9}} + \frac{{1 - 2{\rm{x}}}}{x} + \frac{{x - 1}}{{2{\rm{x}} + 1}} - \frac{3}{{x + 3}}\\ = \left( {\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - 2{\rm{x}}}}{x}} \right) + \left( {\frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{{x - 1}}{{2{\rm{x}} + 1}}} \right) + \left( {\frac{3}{{{x^2} - 9}} - \frac{3}{{x + 3}}} \right)\\ = 0 + 0 + \frac{3}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{3}{{x + 3}}\\ = \frac{{3 - 3\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{12 - 3{\rm{x}}}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\end{array}\)

26 tháng 11 2017

) \(\dfrac{x^3+8y^3}{2y+x}\)

\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)

\(=x^2+2xy+4y^2\)

b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)

\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)

\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)

\(=\dfrac{3a-1}{2\left(a-4\right)}\)

c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)

\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2}\)

d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)

\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)

\(=x^2-10x+25+7x+14-x^2-2x\)

\(=39-5x\)

e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)

\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)

\(=\dfrac{3x+2x+1}{x-2}\)

\(=\dfrac{5x+1}{x-2}\)

h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)

\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

27 tháng 11 2017

câu f ,g đâu

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a)

\(\begin{array}{l}\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{2}{{3{\rm{x}}}} - \frac{x}{{1 - x}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4\left( {1 - x} \right) - 6{{\rm{x}}^2} + 3\left( {6{{\rm{x}}^2} - 4} \right)}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4 - 4{\rm{x}} - 6{{\rm{x}}^2} + 18{{\rm{x}}^2} - 12}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{12{{\rm{x}}^2} - 4{\rm{x}} - 8}}{{6{\rm{x}}\left( {1 - x} \right)}}\end{array}\)

b)

\(\begin{array}{l}\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1}}{{{x^3} - 1}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1 + x\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{ - {x^3} - 1 + {x^3} + {x^2} + x - {x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{x}{{{x^3} - 1}}\end{array}\)

c)

 \(\begin{array}{l}\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2\left( {1 - x} \right) - 2\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2 - 2{\rm{x}} - 2{\rm{x}} - 4}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{ - 4{\rm{x  -  2}}}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{\left( { - 4{\rm{x}} - 2} \right)\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 8{\rm{x}} - 2{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 6{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {4{{\rm{x}}^2} - 1} \right)}}\end{array}\)

 

d)

\(\begin{array}{l}1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}.\frac{{1 + x - 1}}{{1 - {x^2}}}\\ = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}}.\frac{x}{{1 - {x^2}}}\\ = 1 + \frac{{ - {x^2}\left( {{x^2} - 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}\\ = 1 + \frac{{ - {x^2}}}{{{x^2} + 1}}\\ = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}}\\ = \frac{1}{{{x^2} + 1}}\end{array}\)

10 tháng 10 2016

a)Có: \(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}=\frac{a\left(x-1\right)\left(x+1\right)+bx\left(x+1\right)+cx\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\frac{a\left(x^2-1\right)+bx^2+bx+cx^2+cx}{x\left(x^2-1\right)}=\frac{ax^{2\:}-a+bx^2+bx+cx^2-cx}{x^3-x}\)

\(=\frac{\left(a+b+c\right)x^2+\left(b-c\right)x-a}{x^3-x}\)

Do đó:  \(\frac{6x^2-x-1}{x^3-x}=\frac{\left(a+b+c\right)x^2+\left(b-c\right)x-a}{x^3-x}\)

Đồng nhất hai phân thức trên ta được:

\(\begin{cases}a+b+c=6\\b-c=-1\\a=1\end{cases}\)\(\Leftrightarrow\begin{cases}a=1\\b=2\\c=3\end{cases}\)

Phần b tương tự