Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1
=4x^4+2x^3+2x^2-5x-1
A(x)=(7x2-5x2-2x2)-(6x3-10x3)+2x-12
A(x)=-4x3+2x-12
Sắp xếp:-4x3+2x-12
\(A\left(x\right)=\left(7x^2-5x^2-2x^2\right)-\left(6x^3-10x^3\right)+2x-12\)
\(A\left(x\right)=-4x^3+2x-12\)
Sắp xếp:\(-4x^3+2x-12\)
a)f(x)= (-2x^3+ 2x^3) + ( x - 5x) + (-1 + 4) + (4x^2 + x^2)
f(x)= 0 + ( -4x) + ( - 3 ) + 5x^2
f(x)= - 4x - 3 + 5x^2
f(x)= 5x^2 -4x -3
b) hệ số cao nhất của f(x) là: 5
c)f(-2)= 5(-2)^2 - 4(-2) - 3= 20- 8 -3=9
mik sợ sai lắm
a) f(x)= (2x mũ 3 + 2x mũ 3)+ (4x mũ 2 + x mũ 2)+(9x-5x) +(-1+4)
f (x)=4x^3 + 5x^2 +4x +3
b) Hệ số cao nhất là 4
c) (4x^3 + 5x^2 +4x+3)(-2)
4x^3 .(-2) + 5x^2 .(-2) +4x . (-2)+3.(-2)
-8x ^3 + (-10x^2) + (-8x)+ (-6)
-8x ^3 - 10x^2 - 8x - 6
1) a)
\(A\left(x\right)=x^3+5x-7x^2-2x-12+3x^3\\ \text{ }=\left(x^3+3x^3\right)-7x^2+\left(5x-2x\right)-12\\ \text{ }=4x^3-7x^2+3x-12\)
\(B\left(x\right)=-2x^3+2x^2+12+5x^2-9x\\ \text{ }=-2x^3+\left(2x^2+5x^2\right)-9x+12\\ \text{ }=-2x^3+7x^2-9x+12\)
b)
\(A\left(x\right)+B\left(x\right)=\left(4x^3-7x^2+3x-12\right)+\left(-2x^3+7x^2-9x+12\right)\\ \text{ }=4x^3-7x^2+3x-12-2x^3+7x^2-9x+12\\ \text{ }=\left(4x^3-2x^3\right)+\left(7x^2-7x^2\right)-\left(9x-3x\right)+\left(12-12\right)\\ \text{ }=2x^3-6x\)
\(B\left(x\right)-A\left(x\right)=\left(-2x^3+7x^2-9x+12\right)-\left(4x^3-7x^2+3x-12\right)\\ \text{ }=-2x^3+7x^2-9x+12-4x^3+7x^2-3x+12\\ \text{ }=\left(-2x^3-4x^3\right)+\left(7x^2+7x^2\right)-\left(9x+3x\right)+\left(12+12\right)\\ \text{ }=6x^3+14x^2-12x+24\)
\(\left(4x-7\right)\cdot\left(x+5\right)\\ =4x\left(x+5\right)-7\left(x+5\right)\\ =4x\cdot x+4x\cdot5-7\cdot x-7\cdot5\\ =4x^2+20x-7x-35\)
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm
a. Ta có: A(x) = x5 + x2 + 5x + 6 - x5 - 3x - 5
= x2 + 2x + 1 (0.5 điểm)
B(x) = x4 + 2x2 - 3x - 3 - x4 - x2 + 3x + 4 = x2 + 1 (0.5 điểm)
\(A=x^5-x^5+5x^4+x^4-3x^2+x^2-\dfrac{1}{2}x-1=6x^4-2x^2-\dfrac{1}{2}x-1\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)
`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`
`= x^4 + 5x^3 - x^2 - x + 1`
\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)
`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`
`= x^4 + 2x^3 - 2x^2 - 3x +2`
`b)`
`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`
`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`
`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`
`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`
`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`
`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`
`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`
`= 3x^3 + x^2 + 2x - 1`
`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`
`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`
`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`
`= -3x^3 - x^2 - 2x + 1`
`@` `\text {Kaizuu lv u.}`
ab, \(A\left(x\right)=-x^4+2x^3+7x^2+5x-10\)
c, hệ số tự do -10 ; hệ số cao nhất 7
d, \(A\left(-1\right)=-1-2+7-5-10=-11\)
\(A\left(1\right)=-1+2+7+5-10=3\)
`Answer:`
a.+b. \(A\left(x\right)=5x+7x^2+6x^5-x^4+2x^3-10-6x^5\)
\(=\left(6x^5-6x^5\right)-x^4+2x^3+7x^2+5x-10\)
\(=-x^4+2x^3+7x^2+5x-10\)
c. Hệ số cao nhất là `7` và hệ số tự do là `-10`
d. \(A\left(-1\right)=-1.\left(-1\right)^4+2.\left(-1\right)^3+7.\left(-1\right)^2+5.\left(-1\right)-10\)
\(=\left(-1\right)+\left(-2\right)+7+\left(-5\right)-10\)
\(=-11\)
\(A\left(1\right)=-1.1^4+2.1^3+7.1^2+5.1-10\)
\(=-1+2+7+5-10\)
\(=3\)