\(3x^4-\frac{3}{4}x^3+2x^2-3\)

B(x)=\(8x^4+\frac{1}{5}x^3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

\(A\left(x\right)+B\left(x\right)=3x^4-\frac{3}{4}x^3+2x^2-3+8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}\)

\(=11x^4-\frac{11}{20}x^3+2x^2-\frac{13}{5}-9x\)

\(A\left(x\right)-B\left(x\right)=3x^4-\frac{3}{4}x^3+2x^2-3-8x^4-\frac{1}{5}x^3+9x-\frac{2}{5}\)

\(=-5x^4-\frac{19}{20}x^3+2x^2-\frac{17}{5}+9x\)

Bn làm nót nhé, tương tự thôi 

7 tháng 8 2020

\(A\left(x\right)+B\left(x\right)\)

\(=\left(3x^4-\frac{3}{4}x^3+2x^2-3\right)+\left(8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}\right)\)

\(=11x^4-\frac{11}{20}x^3+2x^2-9x-\frac{13}{5}\)

\(A\left(x\right)-B\left(x\right)\)

\(=3x^4-\frac{3}{4}x^3+2x^2-3-8x^4-\frac{1}{5}x^3+9x-\frac{2}{5}\)

\(=-5x^4-\frac{19}{20}x^3+2x^2+9x-\frac{17}{5}\)

\(B\left(x\right)-A\left(x\right)\)

\(=8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}-3x^4+\frac{3}{4}x^3+2x^2-3\)

\(=5x^4+\frac{19}{20}x^3+2x^2-9x-\frac{13}{5}\)

Bài 5: 

a: \(P\left(x\right)=3x^5+x^4-2x^2+2x\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

b: \(P\left(x\right)+Q\left(x\right)=3x^5-3x^5+x^4-2x^2+2x^2+2x-2x+3\)

\(=x^4+3\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-3\)

c: \(P\left(0\right)=3\cdot0^5+0^4-2\cdot0^2+2\cdot0=2\)

\(Q\left(0\right)=-3\cdot0^5+2\cdot0^2-2\cdot0+3=3\)

Vậy: x=0 là nghiệm của P(x), không là nghiệm của Q(x)

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

2: =>2x-1/4=5/6-1/2x

=>5/2x=5/6+1/4=13/12

=>x=13/30

3: =>3x-5/6=2/3-1/2x

=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2

hay x=32/35

28 tháng 6 2019

\(a,\frac{3x+2}{5x+7}=\frac{3x-1}{5x-1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x-1\right)}=\frac{3}{8};\frac{3x+2}{5x+7}=\frac{3}{8}\Leftrightarrow24x+16=15x+21\Leftrightarrow9x=5\Leftrightarrow x=\frac{5}{9}\) \(b,\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow37.7-7x=3x+39\Leftrightarrow259-7x=3x+39\Leftrightarrow220-7x=3x\Leftrightarrow10x=220\Leftrightarrow x=22\) \(c,\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}=\frac{x+4}{2x+6}=\frac{\left(x+4\right)-\left(x+1\right)}{2x+6-\left(2x+1\right)}=\frac{3}{5};\frac{x+1}{2x+1}=\frac{3}{5}\Leftrightarrow5x+5=6x+3\Leftrightarrow x=2\) \(d,\frac{x-2}{x+2}=\frac{x+3}{x-4}=\frac{\left(x+3\right)-\left(x-2\right)}{\left(x-4\right)-\left(x+2\right)}=\frac{5}{-6};\frac{x-2}{x+2}=\frac{5}{-6}\Leftrightarrow6\left(2-x\right)=5x+10\Leftrightarrow2-6x=5x\Leftrightarrow x=\frac{2}{11}\) \(f,\frac{3x-5}{x}=\frac{9x}{3x+2}=\frac{9x-15}{3x}=\frac{9x-\left(9x-15\right)}{\left(3x+2\right)-3x}=\frac{15}{2};\frac{9x}{3x+2}=\frac{15}{2}\Leftrightarrow18x=45x+30\Leftrightarrow27x+30=0\Leftrightarrow x=\frac{-10}{9}\) \(e,\frac{x+2}{6}=\frac{5x-1}{5}\Leftrightarrow5\left(x+2\right)=6\left(5x-1\right)\Leftrightarrow5x+10=30x-6\Leftrightarrow10=25x-6\Leftrightarrow25x=16\Leftrightarrow x=\frac{16}{25}\)