K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
19 tháng 7 2022

\(A=\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)+\left(x-4\right)^2\\ =x^2+4x+4-\left(x^2-4\right)+x^2-8x+16=x^2-4x+24\\ \cdot x=-2=>A=\left(-2\right)^2-4.\left(-2\right)+24=36\\ \cdot x=0=>A=0^2-4.0+24=24\\ \cdot x=2=>A=2^2-4.2+24=20\\ A=\left(x-2\right)^2+20>0\left(DPCM\right)\)

11 tháng 10 2018

a) \(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(A=4x^2+4x+1-x^2+4-2x^2-2x\)

\(A=x^2+2x+5\)

b) Để A = 4

=> \(x^2+2x+5=4\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

c) Ta có A = x2 + 2x + 5

A = ( x + 1 )2 + 4

=> \(A\ge4>0\left(đpcm\right)\)

11 tháng 10 2018

a,\(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)

\(=4x^2+4x+1-x^2+4-2x^2-2x\)

\(=x^2+2x+5\)

b,\(A=x^2+2x+5=4\)

\(\Rightarrow x^2+2x+5-4=0\)

\(x^2+2x+1=0\)

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

c, Ta có: \(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4>0\)

Hay: A > 0 => đpcm

=.= hok tốt!!

26 tháng 11 2018

a, \(M=\frac{xy^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}=\frac{y^2\left(x+y^2-x\right)+1}{y^4\left(x^2+2\right)+\left(x^2+2\right)}=\frac{y^4+1}{\left(y^4+1\right)\left(x^2+2\right)}=\frac{1}{x^2+2}\)

Thay x=-3 vào M

=>\(M=\frac{1}{\left(-3\right)^2+2}=\frac{1}{11}\)

b, Vì \(x^2\ge0\Rightarrow x^2+2\ge2\Rightarrow M=\frac{1}{x^2+2}>0\)

20 tháng 12 2019

a) Ta có: A = \(\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b) Với x = 4 => A = \(\frac{4-2}{4+2}=\frac{2}{8}=\frac{1}{4}\)

c) ĐKXĐ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne2\\x\ne-2\\x\ne\pm2\end{cases}}\) <=> \(x\ne\pm2\)

Ta có: A = \(\frac{x-2}{x+2}=\frac{\left(x+2\right)-4}{x+2}=1-\frac{4}{x+2}\)

Để A  nhận giá trị nguyên dương <=> \(1-\frac{4}{x+2}\) nguyên dương

<=> \(-\frac{4}{x+2}\) nguyên dương <=> -4 \(⋮\)x + 2

 <=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bảng: 

x + 2 1 -1 2 -2 4 -4
  x-1(tm)-3(tm)0(tm)-4(tm) 2(ktm)-6(tm)

Vậy ....

14 tháng 7 2018

B1:

\(a,A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x^2-9\right)}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\left(\frac{\left(3-x\right)\left(x+3\right)}{x^2-9}+\frac{x\left(x-3\right)}{x^2-9}\right).\frac{x+3}{3x^2}\)

\(=\frac{3x+9-x^2-3x+x^2-3x}{x^2-9}.\frac{x+3}{3x^2}\)

\(=\frac{9-3x}{x^2-9}.\frac{x+3}{3x^2}\)

\(=\frac{3\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)3x^2}\)

\(=\frac{3-x}{x^3-3x^2}\)

14 tháng 7 2018

B2: 

\(a,B=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x+2}{x^2-4}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\frac{x-2x-4+x-2}{x^2-4}\right):\frac{6}{x+2}\)

\(=-\frac{6}{x^2-4}.\frac{x+2}{6}\)

\(=\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)6}=-\frac{1}{x-2}\)

20 tháng 10 2018

a) \(A=\left(25x^2-10x+1\right)-\left(9x^2-1\right)-12x^2+12x\)

\(=25x^2-9x^2-12x^2-10x+12x+1+1\)

\(=4x^2-2x+2\)

b) A=8 

\(\Leftrightarrow4x^2-2x+2=8\)

\(\Leftrightarrow4x^2-2x-6=0\Leftrightarrow2x^2-x-3=0\)

\(\Leftrightarrow2x^2-3x+2x-3=0\Leftrightarrow x\left(2x-3\right)+\left(2x-3\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}\)

c) \(A=4x^2-2x+2=\left(2x\right)^2-2.2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(2x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)với mọi x

27 tháng 12 2020

a) ĐKXĐ: \(x\notin\left\{3;-3;-2\right\}\)

Ta có: \(P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\)

\(=\left(\dfrac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-10x}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x-3}\)

\(=\dfrac{2x^2-6x-x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)

\(=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\)

\(=\dfrac{3x}{x+3}\)

b) Ta có: \(x^2-7x+12=0\)

\(\Leftrightarrow x^2-3x-4x+12=0\)

\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=4\left(nhận\right)\end{matrix}\right.\)

Thay x=4 vào biểu thức \(P=\dfrac{3x}{x+3}\), ta được: 

\(P=\dfrac{3\cdot4}{4+3}=\dfrac{12}{7}\)

Vậy: Khi \(x^2-7x+12=0\) thì \(P=\dfrac{12}{7}\)