Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{\frac{\left(x-y\right)^2}{x^2}\cdot\frac{x}{x-y}}=\) \(\frac{x-y}{x}\)
b. \(\sqrt{\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\cdot\frac{x-y}{x+y}}=\sqrt{\frac{x+y}{x-y}}\)
c.\(\sqrt{\frac{x^4}{\left(x-5\right)^2}\cdot\frac{x-5}{3x}}=\sqrt{\frac{x^3}{3\left(x-5\right)}}\)
\(-2\sqrt{-a}=\sqrt{\left(-2\right)^2\cdot-a}=\sqrt{-4a}\)
a: \(xy^2\sqrt{x}=\sqrt{x^2y^4\cdot x}=\sqrt{x^3y^4}\)
b: \(\dfrac{2}{x}\sqrt{\dfrac{15xy}{4}}=-\sqrt{\dfrac{4}{x^2}\cdot\dfrac{15xy}{4}}=-\sqrt{\dfrac{15y}{x}}\)
a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)
b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)
1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)
2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)
3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)
a)\(=-\sqrt{\left(\frac{a}{b}\right)^2\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a^2}{b^2}\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a}{b}}\)
\(\frac{1}{x-y}.\sqrt{x^4\left(x^2+y^2-2xy\right)}\)
\(=\frac{1}{x-y}.\sqrt{\left(x^2\right)^2.\left(x-y\right)^2}\)
\(=\frac{1}{x-y}\left(x-y\right)x^2\)
\(=x^2\)
a: \(x\sqrt{x}=\sqrt{x^2\cdot x}=\sqrt{x^3}\)
b: \(y\sqrt{\dfrac{x}{y}}=\sqrt{y^2\cdot\dfrac{x}{y}}=\sqrt{xy}\)
c: \(\dfrac{x}{y}\cdot\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}\)
d: \(-0.06\cdot\sqrt{250}=-\sqrt{\dfrac{9}{2500}\cdot250}=-\sqrt{\dfrac{9}{10}}\)
a) \(x\sqrt{x}=\sqrt{x^2\cdot x}=\sqrt{x^3}\)
b) \(y\sqrt{\dfrac{x}{y}}=\sqrt{y^2\cdot\dfrac{x}{y}}=\sqrt{xy}\)
c) \(\dfrac{x}{y}\sqrt{\dfrac{y}{x}}=\sqrt{\left(\dfrac{x}{y}\right)^2\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}\)
d) \(-0,06\sqrt{250}=-\sqrt{\left(0,06\right)^2\cdot250}=-\sqrt{0,9}\)