K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

B(x)=5x2+x-5

=>2B(x)=2(5x2+x-5)

=>2B(x)=10x2+2x-10

+)Ta có : C(x)-2B(x)=A(x)

=>C(x)=A(x)+2B(x)

A(x)+2B(x)=(3x3+3x2+2x-1)+(10x2+2x-10)

A(x)+2B(x)=3x3+3x2+2x-1+10x2+2x-10

A(x)+2B(x)=3x3+(3x2+10x2)+(2x+2x)+(-1-10)

A(x)+2B(x)=3x3+13x2+4x-11

=> C(x)=3x3+13x2+4x-11

\(A\left(x\right)=3x^3+3x^2+2x-1\)

\(B\left(x\right)=5x^2+x-5\)

Ta có : \(C\left(x\right)-2B\left(x\right)=A\left(x\right)\)

\(\Leftrightarrow C\left(x\right)-10x^2+2x-10=3x^3+3x^2+2x-1\)

\(\Leftrightarrow C\left(x\right)=-10x^2+2x-10-3x^3-3x^2-2x+1=0\)

\(\Leftrightarrow C\left(x\right)=-13x^2-9-3x^3=0\)

Vậy \(C\left(x\right)=-13x^2-9-3x^3\)

24 tháng 4 2019

M(x) = -3x+6

Ta có: -3x+6 = 0

           -3x     = -6

              x     = 3

24 tháng 4 2019

cảm ơn bạn nhìu nha!!!

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

6 tháng 11 2018

a)\(A=x^2-1\)

\(Nx:\)\(x^2\ge0\)

\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)

b) \(B=x^2-2x+3\)

\(=x\left(x-2\right)+3\)

\(Nx:x\left(x-2\right)\ge0\)

\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)

c) \(C=\left|2x+1\right|-5\)

\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)

d) \(D=3x^2+6x-7\)

\(=3\left(x^2+2x\right)-7\)

\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)

\(D_{Min}=-8\Leftrightarrow x=-1\)

12 tháng 4 2019

\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)

\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)

\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)

\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)

\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)

\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)

\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)

\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)

\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)

\(h\left(x\right)=0+x+6+x^3\)

\(h\left(x\right)=x^3+x+6\)

12 tháng 4 2019

d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9

         <=> h(x)                   = -2x2 - x + 9 - f(x) + g(x)

         <=> h(x)                   = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3

         <=> h(x)                   = x3 + x.

Vậy h(x) = x3 + x

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

2 tháng 8 2018

Giúp mình với minh cần gấp

2 tháng 8 2018

a)

\(P\left(x\right)=2x^3+x^2-3x-1+x^3-3x^2-5x+1\)

\(P\left(x\right)=\left(2x^3+x^3\right)+\left(x^2-3x^2\right)-\left(3x+5x\right)-\left(1-1\right)\)

\(P\left(x\right)=3x^3-2x^2-8x\)

tương tự làm nốt

b) Tìm nghiệm thì đặt bằng 0 rồi tính là OK

Học tốt~

7 tháng 6 2020

\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)

7 tháng 6 2020

Thu gọn + sắp xếp luôn

P(x) = 3x5 + x4 - 2x2 + 2x - 1

Q(x) = -3x5 + 2x2 - 2x + 3

P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )

                   = ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )

                   = x4 + 2

P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - (  -3x5 + 2x2 - 2x + 3 )

                  = 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3

                  = ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )

                  = 6x5 + x4 - 4x2 + 4x - 4

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá