Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath
Nhớ xem và !
a, 24 và 10
b, 6 và 30
c, 6 và 36
d, <không có trường hợp nào>
e, 36 và 6
Chúc bạn học giỏi !
<Lưu ý : Bạn xem lại câu d>
a) Ta có ƯCLN(a;b).BCNN(a;b) = a.b
=> a.b = 6.36 = 216
Vì ƯCLN(a;b) = 6
=> a = 6m ; b = 6n (ƯCLN(m;n) = 1)
Khi đó a.b = 216
<=> 6m.6n = 216
=> m.n = 6
Ta có 6 = 1.6 = 2.3
Lập bảng xét các trường hợp
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a | 6 | 36 | 12 | 18 |
b | 36 | 6 | 18 | 12 |
Vậy các cặp số (a;b) thỏa mãn là : (36;6) ; (6;36) ; (12;18) ; (18;12)
b) Ta có ƯCLN(a;b) . BCNN(a;b) = a.b
=> ƯCLN(a;b) . 150 = 3750
=> ƯCLN(a;b) = 25
Đặt a = 25m ; b = 25n (ƯCLN(m;n) = 1)
Khi đó a.b = 3750
<=> 25m.25n = 3750
=> m.n = 6
Ta có 6 = 1.6 = 2.3
Lập bảng xét các trường hợp
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a | 25 | 150 | 50 | 75 |
b | 150 | 25 | 75 | 50 |
Vậy các cặp số (a;b) thỏa mãn là : (25;150) ; (150;25) ; (50;75) ; (75;50)
c) Ta có ƯCLN(a;b) . BCNN(a;b) = 180
=> ƯCLN(a;b) . 20.ƯCLN(a;b) = 180
=> [ƯCLN(a;b)]2 = 9
=> ƯCLN(a;b) = 3
Đặt a = 3m ; b = 3n (ƯCLN(a;b) = 1)
Khi đó a.b = 180
<=> 3m.3n = 180
=> m.n = 20
Ta có 20 = 1.20 = 4.5
Lập bảng xét các trường hợp
m | 1 | 20 | 4 | 5 |
n | 20 | 1 | 5 | 4 |
a | 3 | 60 | 12 | 15 |
b | 60 | 3 | 15 | 12 |
Vậy các cặp số (a;b) thỏa mãn là : (3;60) ; (60;3) ; (12;15) ; (15;12)
1)do 72=23.32
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
2)Đặt ƯCLN(a;b)=d
Vậy a=dm ; b=dn (m>n vì a-b là số nguyên dương)
a-b=dm-dn=d.(m-n)=7=7.1=1.7
Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980
Khi đó: a=7m ; b=7n => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10
+ Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28
+Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14
Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140
Khi đó: a=1m=m ; b=1n=n =>
a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2
<=> a.b=140.1=35.4=28.5=70.2
Đó chính là các giá trị a,b thỏa mãn
cn mấy ý khác bn dựa vào tự làm nha!
Từ dữ liệu đề bài cho, ta có : + Vì ƯCLN(a, b) = 15, nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho: a = 15m; b = 15n (1) và ƯCLN(m, n) = 1 (2) + Vì BCNN(a, b) = 300, nên theo trên, ta suy ra : + Vì a + 15 = b, nên theo trên, ta suy ra :
Trong các trường hợp thoả mãn các điều kiện (2) và (3), thì chỉ có trường hợp : m = 4, n = 5 là thoả mãn điều kiện (4). Vậy với m = 4, n = 5, ta được các số phải tìm là : a = 15 . 4 = 60; b = 15 . 5 = 75 |
Lời giải:
a. Vì $ƯCLN(a,b)=4$ nên đặt $a=4x, b=4y$ với $x,y$ là 2 số tự nhiên, $(x,y)=1$.
$a+b=48$
$\Rightarrow 4x+4y=48$
$\Rightarrow x+y=12$
Mà $x,y$ nguyên tố cùng nhau nên $x,y$ có thể nhận các giá trị là:
$(1,11), (5,7), (7,5), (11,1)$
$\Rightarrow (a,b)=(4,44), (20,28), (28,20), (44,4)$
b.
Gọi $ƯCLN(a,b)=d$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
$BCNN(a,b)=dxy=60$
$ab=dx.dy=180$
$\Rightarrow dxy.d=180\Rightarrow 60d=180\Rightarrow d=3$
$xy=60:d=60:3=20$
Vì $x,y$ nguyên tố cùng nhau nên:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
$\Rightarrow (a,b)=(3,60), (12,15), (15,12), (60,3)$