Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
=3*(1/1.2+1/2.3+...+1/2018.2019)
=3(1-1/2+1/2-1/3+...+1/2018-1/2019)
=3(1-1/2019)
=3*2018/2019
=2018/673
\(A=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{2018.2019}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=3.\left(1-\frac{1}{2019}\right)\)
\(=3.\frac{2018}{2019}=\frac{2018}{673}\)
A=1.2+2.3+3.4+...+19.20
3A=1.2.3+2.3.3+3.4.3+...+19.20.3
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)
3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...19.20.21-18.19.20
3A=1.2.3+2.3.4+3.4.5+...+19.20.21-0.1.2-1.2.3-2.3.4-...-18.19.20
3A=19.20.21-0.1.2
3A=7980-0
3A=7980
A=7980÷3
A=2660
B=1^2+3^2+5^2+7^2+...+99^2
B=1.1+3.3+5.5+7.7+...+99.99
B=1.(2-1)+3.(4-1)+5.(6-1)+7.(8-1)+...+99.(100-1)
B=1.2+3.4+5.6+7.8+...+99.100-(1+3+5+7+...+99)
B=(99.100.101)÷3-(99+1).50
B=333300-5000
B=328300
S= 1.2+2.3+3.4+......+99.100
=>3S=1.2.3+2.3.3+3.4.3+...+99.100.3
=>3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100+(101-98)
=>3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=>3S=(1.2.3-1.2.3)+(2.3.4-2.3.4)+(3.4.5-3.4.5)+...+(98.99.100-98.99.100)+99.100.101
=>3S=0+0+0+...+0+999900
=>3S=999900
=>S=999900:3
=>S=333300
Vậy S=333300
tick ủng hộ mình với
Nhân tất cả các tích với 3 rồi làm theo kiểu :(3-0);(4-1);..
S=1.2+2.3+...+39.40
3S=1.2.(3 - 0)+2.3.(4 - 1)+...+39.40.(41 - 38)
3S=1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 39.40.41 - 38.39.40
3S=39.40.41
S=13.40.41
S=21320
Đặt \(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}=\frac{891}{100}\)
Ủng hộ mk nha !!! ^_^
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+.......+\frac{9}{99.100}\)
\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}=\frac{891}{100}\)
Chị dùg cách tính tổng đi
1. Tìm dãy cách đều bao nhiêu
2. Từ công thức tính tổng rồi suy ra
a, \(2^{x+2}+2^{x-1}+2^{x-2}=152\)
\(\Rightarrow\) \(2^x.2^2+2^x:2+2^x:2^2=152\)
\(\Rightarrow\) \(2^x.2^2+2^x.\frac{1}{2}+2^x.\frac{1}{4}=152\)
\(\Rightarrow\) \(2^x.\left(2^2+\frac{1}{2}+\frac{1}{4}\right)=152\)
\(\Rightarrow\) \(2^x.\frac{19}{4}=152\)
\(\Rightarrow\) \(2^x=32\)
\(\Rightarrow\) \(2^x=2^5\)
\(\Rightarrow\) \(x=5\)
đợi mãi mà chẳng có ai giúp hết zợ
haizzz..."tỏ ra ý chán nản"
Ta có: \(A=1.2+2.3+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(\Rightarrow3A=98.99.100\)
\(\Rightarrow A=\frac{98.99.100}{3}\)
\(\Rightarrow A=98.33.100\)
\(\Rightarrow A=323400\)
A=1.2+2.3+3.4+........+98.99
A = 3234003A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
===>A=(98.99.100)/3