K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(4x^2-4x+2=4x^2-4x+1+1=\left(2x-1\right)^2+1>0\forall x\)

d: \(3x^2-x+1\)

\(=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{3}\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{11}{36}\right)\)

\(=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{11}{12}\ge\dfrac{11}{12}\)

Dấu '=' xảy ra khi x=1/6

Bài 1: Rút gọn :A =(x2 - 1)\(\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)                                                  B = \(\left(y-\frac{x^2+y^2}{x+y}\right).\left(\frac{2y}{x}-\frac{4y}{x-y}\right)\)C = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)                         D = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)Bài 2 :a) Tìm giá trị nhỏ...
Đọc tiếp

Bài 1: Rút gọn :

A =(x- 1)\(\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)                                                  B = \(\left(y-\frac{x^2+y^2}{x+y}\right).\left(\frac{2y}{x}-\frac{4y}{x-y}\right)\)

C = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)                         D = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)

Bài 2 :

a) Tìm giá trị nhỏ nhất của A = x2 + 4x -7; B = 2x2 - 3x +5; C = x4 - 3x2 + 1

b) Tìm giá trị lớn nhất của A = -x2 + 6x - 7; B = -3x-x + 4; C = -2x4 - 4x2 + 3

Bài 3:

a) Cho a + b = 7; ab = 10. Tính A = a2 + b2; B = a3 + b3

b) Chứng minh -x2 + x - 1 < 0 với mọi số thực x

c) Chứng minh x2 + xy + y2 + 1 > 0 với mọi số thực x và y

---> Mình đang cần gấp, các bạn giúp mình với :( Cám ơn ạ

 

1
22 tháng 6 2018

Đăng từng bài thôi nha bạn 

Bài 1 : Năm nay mới lên lớp 8 -_- 

Bài 2 : 

\(a)\) 

* Câu A : 

\(A=x^2+4x-7\)

\(A=\left(x^2+4x+4\right)-11\)

\(A=\left(x+2\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé ) 

Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)

* Câu B : 

\(B=2x^2-3x+5\)

\(2B=4x^2-6x+10\)

\(2B=\left(4x^2-6x+1\right)+9\)

\(2B=\left(2x-1\right)^2+9\ge9\)

\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)

* Câu C : 

\(C=x^4-3x^2+1\)

\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)

\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)

Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)

Chúc bạn học tốt ~ 

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

Bài 1: Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).Bài 2: Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.Bài 3: Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng...
Đọc tiếp

Bài 1: 

Đa thức bậc 4 có hệ số bậc cao nhất là 1 và thoả mãn f(1) = 5; f(2) =11; f(3) = 21. Tính f(-1) + f(5).
Bài 2:

 Một người đi một nữa quãng đường từ A đến B với vận tốc 15km/h, và đi phần còn lại với vận tốc 30km/h. Tính vận tốc trung bình của người đó trên toàn bộ quãng đường AB.
Bài 3:

 Chứng minh rằng : S ≤\(\frac{a^2+b^2}{4}\) với S là diện tích của tam giác có độ dài hai cạnh bằng a, b.
Bài 4: 
a)Tìm tất cả các số nguyên n sao cho :\(n^4+2n^3+2n^2+n+7\) là số chính phương.
b)Tìm nghiệm nguyên của của phương trình:x2+xy+y2=x2y2
Bài 7:

 Chứng minh rằng : (x-1)(x-3)(x-4)(x-6) + 10 > 0   \(\forall x\)
Bài 8:

 Cho x≥0, y≥0, z≥0 và x+y+z=1. Chứng minh rằng:\(xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 9: Cho biểu thức:
P=\(\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a) Rút gọn P
b) Tính giá trị của P khi |x|=\(\frac{1}{2}\)
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
d) Tìm x để P>0
Bài 10: 

Một người đi xe gắn máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Tính khoảng cách AB và vận tốc dự định đi của người đó.
Bài 11: Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bài 11: Cho biểu thức: 

\(A=\left[\frac{2}{3x}+\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên.

0
1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3 2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y A= (3x-5) (2x+11) - (2x+3) (3x+7) B= (2x+3) (4x2-6x+9) - 2(4x3-1) C= (x-1)3 - (x+1)3+ 6(x+1)(x-1). 3. Tìm min của A, B, C và max của D, E A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6) D= 5 - 8x - x2 E= 4x - x2 +1 4. a. Cho a+b+c = 0. Chứng minh...
Đọc tiếp

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3

2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y

A= (3x-5) (2x+11) - (2x+3) (3x+7)

B= (2x+3) (4x2-6x+9) - 2(4x3-1)

C= (x-1)3 - (x+1)3+ 6(x+1)(x-1).

3. Tìm min của A, B, C và max của D, E

A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6)

D= 5 - 8x - x2 E= 4x - x2 +1

4. a. Cho a+b+c = 0. Chứng minh a3+b3+c3= 3abc

b. Tìm giá trị của a, b biết: a2 +2a + 6b + b2= -10

5. Tìm n∈Z để 2n2-n+2 ⋮ 2n+1

6. Tìm giá trị của biểu thức A= \(\dfrac{x+y}{z}+\dfrac{x+z}{y}\)nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

7. Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên:

M=\(\dfrac{10x^2-7x-5}{2x-3}\)

8. Tìm giá trị nhỏ nhất của biểu thức: \(B=\dfrac{x^2-2x+2005}{x^2}\)

Mấy bạn giúp mình thi học kì với ạ! Cảm ơn trước nha!

3

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp