Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
Có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1^2\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(ayz+bxz+cxy=0\right)\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=\dfrac{xbc+yac+zab}{abc}=1\\ \Rightarrow xbc+yac+zab=abc\)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=\dfrac{ayz+bxz+cxy}{xyz}=0\\ \Rightarrow ayz+bxz+cxy=0\)
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(abc\right)^2}\)
\(\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc+yac+zab\right)^2}\\ =\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2abc\left(ayz+bxz+cxy\right)}\)
\(\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2abc.0}\\ =\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}=1\)
vậy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)(đpcm)
\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\dfrac{xyz}{abc}.\left(\dfrac{c}{z}+\dfrac{b}{y}+\dfrac{a}{x}\right)=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\dfrac{xyz}{abc}.0=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)
* Ta có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{axy}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
* Ta có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{b^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)Mà \(cxy+bxz+ayz=0\)
\(\Rightarrow2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=0\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Vậy.........................
Ta có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
=>\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
=> \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)
=>\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{ayz}{abc}+\dfrac{bxz}{abc}\right)=1\) (1)
Lại có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
=> \(\dfrac{a}{x}.\dfrac{yz}{yz}+\dfrac{b}{y}.\dfrac{xz}{xz}+\dfrac{c}{z}.\dfrac{xy}{xy}=0\)
=>\(\dfrac{ayz}{xuy}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\) (2)
Thay (2) vào (1) ta được
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)
=> \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Vì \(a,b,c,x,y,z\ne0\) nên :
Đặt \(\dfrac{a}{x}=m;\dfrac{b}{y}=n;\dfrac{c}{z}=p\Rightarrow\dfrac{x}{a}=\dfrac{1}{m};\dfrac{y}{b}=\dfrac{1}{n};\dfrac{z}{c}=\dfrac{1}{p}\)
Vậy ta có: \(m+n+p=0\)
\(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\Leftrightarrow\left(\dfrac{1}{m}+\dfrac{1}{m}+\dfrac{1}{p}\right)^2=1\)
\(\Leftrightarrow\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}+2\left(\dfrac{m+n+p}{mnp}\right)=1\)
\(\Leftrightarrow\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}=1\)
Vậy: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\Rightarrow M=1\)
Ta có : \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)
\(\Rightarrow\dfrac{bcx}{abc}+\dfrac{acy}{abc}+\dfrac{abz}{abc}=0\)
\(\Rightarrow\dfrac{bcx+acy+abz}{abc}=0\)
\(\Rightarrow bcx+acy+abz=0\)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=10\)
\(\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=10^2\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ac}{xz}\right)=100\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+acy}{xyz}\right)=100\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{0}{xyz}\right)=100\)
\(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=100\)
\(\Rightarrow S=100\)
Ta đặt x/a=m;y/b=n;c/z=k suy ra m+n+k=0 suy ra
a/x=1/m;y/b=1/n và c/z=1/k từ đó ta có bài toán m+n+k=0 và 1/n+1/m+1/k=1
Mk chỉ gợi ý đến đó thôi nha các bạn tự làm tiếp nha nhớ tick mk vs
a, \(9x^2+y^2+2z^2-18x-6y+4z+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Vì \(\left\{{}\begin{matrix}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Mà \(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
Vậy...
b, Câu hỏi của Cry... - Toán lớp 8 | Học trực tuyến