K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

a)   1796

b)   1

tick cho minh nhe!

a) 3;5;11

e) 9;30

Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1

Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)

Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)

\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)

Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không

Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn

Vậy n=1 hoặc n=5

Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1

*Xét 7n+13\(⋮\)n+1(1)

+)Ta có:n+1\(⋮\)n+1

=>7.(n+1)\(⋮\)n+1

=>7n+7\(⋮\)n+1(2)

+)Từ (1) và (2)

=>(7n+13)-(7n+7)\(⋮\)n+1

=>7n+13-7n-7\(⋮\)n+1

=>6\(⋮\)n+1

=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}

=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}

=>n\(\in\){1;2}(*)

*Xét 7n+13\(⋮\)3n+1

      =>3.(7n+13)\(⋮\)3n+1

      =>21n+39\(⋮\)3n+1(3)

+)Ta có:3n+1\(⋮\)3n+1

        =>7.(3n+1)\(⋮\)3n+1

        =>21n+7\(⋮\)3n+1(4)

+)Từ (3) và (4)

=>(21n+39)-(21n+7)\(⋮\)3n+1

=>21n+39-21n-7\(⋮\)3n+1

=>32\(⋮\)3n+1

=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}

+)Ta có bảng:

3n+1-11-22-44-88-1616-3232
n\(\frac{-2}{3}\)\(\notin\)N*0\(\notin\)N*-1\(\notin\)N*\(\frac{1}{3}\)\(\notin\)N*\(\frac{-5}{3}\)\(\notin\)N*1\(\in\)N*-3\(\notin\)N*\(\frac{7}{3}\)\(\notin\)N*-5\(\notin\)N*5\(\in\)N*\(\frac{-31}{3}\)\(\notin\)N*\(\frac{31}{3}\)\(\notin\)N*

=>n\(\in\){1;5}(**)

+)Từ (*) và (**)

=>n=1

Vậy n=1

Chúc bn học tốt

8 tháng 8 2017

2 2/6 [ là hỗn số]

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới