Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong ví của chú sơn trước khi bỏ tiền vào ví có 90 000 đồng .
chia 135 thành 3 phần , số tiền có trong ví tương đương với hai phần .
135 : 3 = 45
bạn phamthiminhtrang thiếu mình bổ sung là số tiền trong ví là 45 x 2 = 90 nhé
A=|x-9|+10
Ta có |x-9| >= 0 với mọi x
=> |x-9|+10 >= 0+10
hay A >= 10
Dấu "=" xảy ra <=> |x-9|=0
<=> x-9=0
<=> x=9
Vậy Min A=10 đạt được khi x=9
A = |x - 9| + 10
Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)
\(\Rightarrow\left|x-9\right|+10\ge10\)
Dấu "=" xảy ra khi:
|x - 9| = 0
=> x - 9 = 0
=> x = 9
Vậy AMIN = 10 khi x = 9
16/10 cách 27/11 41 ngày
20 000 - 15 000 = 5 000 đồng/ngày
5 000 * 41 = 205 000 đồng
như thế ko đủ
HT
từ 16 đến 27 là 11 ngày
số tiền Lan dành 1 ngày : 20000-15000 = 5 000 ( đồng )
số tiền Lan dành 11 ngày : 5000 x 11 = 55 000 ( đồng )
Số tiền cần có để mua giỏ hoa và tấm thiệp chúc mừng : 200 000 + 15 000 = 215 000 ( đồng )
Vậy Lan không đủ tiền mua hoa và thiệp để tặng mẹ
\(A=|x-9|+10\)
Vì \(|x-9|\ge0\)
\(\Rightarrow|x-9|+10\ge10\)
\(\Rightarrow A_{min}=10\)\(\Leftrightarrow|x-9|=0\Rightarrow x-9=0\)
\(\Rightarrow x=9\)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25