Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có Từ (1)<=>7x-4x<8+4
<=>3x<12
<=>x<4 (3)
Từ (2) <=> 10x-12x >-8-15
<=>-2x > -23
<=>x > -11,5(4)
Từ (3), (4) suy ra -11.5<x<4 mà x >0 nên 0<x<4
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
vì x > 2 mà lại nhỏ hơn hoặc =4 nên x có 2 nghiệm là 3; 4 thỏa mãn
cũng như bn có số quả táo nhiều hơn 2 mà ít hơn 5 thì bn có 3 hoặc 4 quả
3-2x <= 15-5x
5x-2x <= 15-3
x<= 4
3-2x <7
x>2
kết hợp nghiệm ta có;
2<x<=4
vậy x = 3; 4 thỏa mãn
a: Để A là số nguyên thì \(x^3-3x^2-x^2+3x+x-3-7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
b: Đề sai rồi bạn
tk cho mình đi mãi yêu