Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :
- AB = AC ( \(\Delta\)ABC cân tại A )
- AM : cạnh chung
- BÂM = CÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )
b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :
- AM : cạnh chung
- Góc AHM = Góc AKM ( = 90° )
- HÂM = KÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )
c ) Gọi O là giao điểm của AM và HK
Xét \(\Delta\)AOH và \(\Delta\)AOK có :
- AO : cạnh chung
- AH = AK ( cmt )
- HÂO = KÂO ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )
\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )
Mà AÔH + AÔK = 180° ( kề bù )
\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90°
Hay AM \(\perp\)HK
a) \(\Delta ABC\)cân tại A có \(\widehat{B}=\widehat{C}\)nên \(\widehat{A}=180^0-2.40^0=100^0\)
Vẽ \(DE//BC\left(E\in AB\right)\)
Trên tia BC lấy điểm F sao cho BD = BF.
Vì BD là phân giác của \(\widehat{B}\)nên \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}=20^0\)
Vì \(DE//BC\)nên \(\widehat{EDB}=\widehat{DBC}\)(so le trong)
Mà \(\widehat{ABD}=\widehat{DBC}\)(Do BD là phân giác của \(\widehat{B}\))
Suy ra \(\widehat{EDB}=\widehat{ABD}\)\(\Rightarrow\Delta EBD\)tại E \(\Leftrightarrow EB=ED\)(1)
Vì \(DE//BC\)nên \(\hept{\begin{cases}\widehat{AED}=\widehat{B}\\\widehat{ADE}=\widehat{C}\end{cases}}\)(đồng vị)
Mà \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A) nên \(\widehat{AED}=\widehat{ADE}\)
\(\Rightarrow\Delta AED\)cân tại A \(\Rightarrow AE=AD\)
Lại có AB = AC (gt) nên EB = DC (2)
Từ (1) và (2) suy ra ED = DC
BD = BF(theo cách vẽ) nên \(\Delta BDF\)cân tại B có \(\widehat{DBF}=20^0\)
\(\Rightarrow\widehat{BDF}=\widehat{BFD}=\frac{180^0-20^0}{2}=80^0\)
Mà \(\widehat{DFB}+\widehat{DFC}=180^0\)(kề bù) nên \(\widehat{DFC}=180^0-80^0=100^0\)
Áp dụng định lý về tổng ba góc trong tam giác vào tam giác FDC, có:
\(\widehat{FDC}=180^0-100^0-40^0=40^0\)
Xét \(\Delta AED\)và \(\Delta FDC\)có:
\(\widehat{ADE}=\widehat{FCD}\left(=40^0\right)\)
ED = DC( cmt)
\(\widehat{AED}=\widehat{FDC}\left(=40^0\right)\)
Suy ra \(\Delta AED=\Delta FDC\left(g-c-g\right)\)
\(\Rightarrow AD=FC\)(hai cạnh tương ứng)
Lúc đó: \(BD+AD=BF+FC=BC\left(đpcm\right)\)
b) Vẽ tam giác đều AMG trên nửa mặt phẳng bờ AB chứa điểm C
Ta có: \(\widehat{GAC}=\widehat{BAC}-\widehat{BAG}=100^0-60^0=40^0\)
Cách khác theo cô Huyền:3
Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath
Xét \(\Delta AMB\) và \(\Delta AMC\).có:
AB = AC ( do tam giác ABC cân tại A )
MB = MC ( do M là trung điểm BC )
AM là cạnh chung
=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)
Bạn tự vẽ hình nha
Xét hai \(\Delta\) vuông ABE và HBE có:
BE là cạnh huyền chung
\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)
Vậy \(\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) ΔABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)
Mà \(\widehat{ABC}=60^o\)
\(\Rightarrow\widehat{ACB}=30^o\)
ΔEHC vuông tại H
\(\Rightarrow\widehat{HEC}+\widehat{HCE}=90^o\)
Mà \(\widehat{HCE}=30^o\)
\(\Rightarrow\widehat{HEC}=60^o\left(1\right)\)
Ta lại có : \(\widehat{ABE}=\widehat{EBH}=\frac{\widehat{ABC}}{2}=\frac{60^o}{2}=30^o\)
ΔBEH vuông tại H
\(\widehat{EBH}+\widehat{BEH}=90^o\)
Mà \(\widehat{EBH}=30^o\)
\(\Rightarrow\widehat{BEH}=60^o\)
Vì HK // BE
\(\Rightarrow\widehat{BEH}=\widehat{EHK}\) (2 góc so le trong bằng nhau)
Mà \(\widehat{BEH}=60^o\)
nên \(\widehat{EHK}=60^o\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)ΔEHK là tam giác đều
c) Xét hai tam giác vuông AEM và HEC có:
AE = HE (ΔABE=ΔHBE)
\(\widehat{AEM}=\widehat{HEC}\) (2 góc đối đỉnh)
Vậy: ΔAEM=ΔHEC(cgv−gn)
\(\Rightarrow\)AM = HC (hai cạnh tương ứng)
Ta có: BM = BA + AM
BC = BH + HC
Mà BA = BH (ΔABE=ΔHBE)
AM = HC (cmt)
⇒ BM = BC
⇒ΔBMC cân tại B
⇒ BN là đường phân giác đồng thời là đường trung tuyến của \(\Delta\) BMC
Nên NM = NC
tự vẽ hình bn nha
a) vì BE là p/g của góc B =>góc B1=góc B2
xét tam giác ABE vg tại A và tam giác HBE vg tại H có :
BE chung
góc B1=góc B2( cmt)
=> tam giác ABE = tam giác HBE ( ch-gn)
nhớ tick cho mk
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222