Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu đặc biệt :
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow9x^4+36x^3+29x^2-14x-16=-16\)
\(\Leftrightarrow9x^4+36x^3+29x^2-14x=0\)
\(\Leftrightarrow x\left(9x^3+36x^2+29x-14\right)=0\)
\(\Leftrightarrow x\left[\left(9x^3+18x^2-7x\right)+\left(18x^2+36x-14\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(9x^2+18x-7\right)+2\left(9x^2+18x-7\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow x\left(x+2\right)\left[\left(9x^2+21x\right)-\left(3x+7\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left[3x\left(3x+7\right)-\left(3x+7\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
<=> x = 0 hoặc x + 2 = 0 hoặc 3x - 1 = 0 hoặc 3x + 7 = 0
<=> x = 0 hoặc x = - 2 hoặc x = 1/3 hoặc x = 7/3
Vậy phương trình có tập nghiệm là : \(S=\left\{0;\frac{1}{3};\frac{7}{3};-2\right\}\)
Câu 2:
a) Ta có: \(2x^2+3x+1>0\)
\(\Leftrightarrow\frac{2x^2+3x+1}{3}>\frac{0}{3}\)
\(\Leftrightarrow\frac{2}{3}x^2+x+\frac{1}{3}>0\)
=> đpcm
b) Ta có: \(4x-1< 0\)
\(\Leftrightarrow0-\left(4x-1\right)>0\)
\(\Leftrightarrow1-4x>0\)
=> đpcm
c) Ta có: \(\frac{3x-2}{4}+2\frac{1}{2}>0\)
\(\Leftrightarrow\frac{3x-2}{4}+\frac{10}{4}>0\)
\(\Leftrightarrow\frac{3x+8}{4}>0\)
\(\Rightarrow3x+8>0\)
=> đpcm
có nghĩa là lấy 3/2 nhân vs từng số hạng trong ngoặc nó sẽ ra là như vậy
Tiếng Anh: ( 15sp cho 1 người )
Fill in each blank with the appropriate forms of the word in bracket.
1. There is a collection of books on the shelf. (collect)
2. It is very inconvinient for people in remote areas to get to hospitals. (convenience)
3. He is very skillful with his hands. (skill)
4. It is said that water collected from the local streams is safe to drink. (safe)
5. I to eat healthy, so I eat a lot of fruits and vegetables every day. (health)
Theo AM - GM cho 3 số dương: \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)
Tiếp tục sử dụng AM - GM, ta được: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}\le\frac{8}{27}\)(do \(a+b+c\le1\))
và \(a^2b^2c^2\le\frac{\left(ab+bc+ca\right)^3}{27}\)
Từ đó suy ra \(a^2b^2c^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(ab+bc+ca\right)^3}{27^2}\)(**)
Từ (*) và (**) suy ra \(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{27}{2\left(ab+bc+ca\right)}\)
Đến đây, ta cần chứng minh \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}\ge\frac{87}{2}\)(***)
Thật vậy, áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{a^2+b^2+c^2}+\frac{27}{2\left(ab+bc+ca\right)}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{23}{2\left(ab+bc+ca\right)}\)\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{23}{2.\frac{\left(a+b+c\right)^2}{3}}\ge\frac{87}{2}\)*đúng theo (***)*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{x^2-25}{2x-6}.\frac{2}{5-x}\)
\(=\frac{\left(x-5\right)\left(x+5\right)2}{2\left(x-3\right)\left(5-x\right)}\)
\(=\frac{-\left(5-x\right)\left(x+5\right)}{\left(x-3\right)\left(x-5\right)}\)
\(=\frac{-x-5}{x-3}\)
mình chỉ làm đến vậy thôi còn nếu có tính thì phải cho gt của x chứ
gọi 3 số đó là n, n+1,n+2.
ta có: n(n+1)+n(n+2)+(n+1)(n+2)=191
n2+n+n2+2n+n2+2n+n+2=191
3n2+6n+2 =191
3n2+6n = 191-2
3n2+6n =189
3n(n+2)=189
n(n+2)=189:3
n(n+2)=63=7.9
=>n=7;n+2=9
vậy 3 số đó là: 7; 8; 9
OLM chọn nhầm huj cái này mới đúng nè
gọi 3 số đó là a-1;a;a+1
vì tổng các tích từng cặp của 2 trong 3 số đó bằng 191 nên ta có:
(a-1)a+a(a+1)+(a-1)(a+1)=191
<=>a2-a+a2+a+a2-1=191
<=>3a2-1=191
<=>3a2=192
<=>a2=64
<=>a=8 hoặc a=-8
vậy 3 số đó là 7;8;9 hoặc -7;-8;-9
mà 3 số đó là 3 số tự nhiên nên 3 số đó là 7;8;9