Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{\left(2\sqrt{2}-1\right)^2}}{2}=\frac{2\sqrt{2}-1}{2}\)
\(\sqrt{\frac{129+16\sqrt{2}}{16}}=\sqrt{\frac{\left(8\sqrt{2}+1\right)^2}{16}}=\frac{8\sqrt{2}+1}{4}\)
\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(\sqrt{\frac{289+4\sqrt{72}}{16}}=\frac{\sqrt{\left(12\sqrt{2}+1\right)^2}}{4}=\frac{12\sqrt{2}+1}{4}\)
\(\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
a)\(\sqrt{10}\cdot\sqrt{40}=\sqrt{10\cdot40}=\sqrt{400}=20\)
b) \(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{2\cdot2\cdot81}=\sqrt{4}\cdot\sqrt{81}=2\cdot9=18\)
a) \(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{\frac{4}{10}.\frac{64}{10}}=\sqrt{\frac{\left(2.8\right)^2}{10^2}}=\frac{16}{10}=\frac{8}{5}\)
b) \(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{\frac{27}{10}.5.\frac{15}{10}}=\sqrt{\frac{3^3.5^2.3}{10^2}}=\sqrt{\frac{\left(3^2.5\right)^2}{10^2}}=\frac{45}{10}=\frac{9}{2}\)
câu này dễ mà
chỉ cần nhân vào là xong
kiến thức đầu lớp 9 khá dễ đấy
tự mình làm đi nha bạn
Áp dụng quy tắc chia hai căn bậc hai, hãy tính :
a) 2300−−−−√23−−√ = \(\sqrt{\dfrac{2300}{23}}\) = \(\sqrt{100}\) = 10
b) 12,5−−−−√0,5−−−√ = \(\sqrt{\dfrac{12,5}{0,5}}\) = \(\sqrt{25}\) = 5
c) 192−−−√12−−√ = \(\sqrt{\dfrac{192}{12}}\) = \(\sqrt{16}\) = 4
d) 6–√150−−−√ = \(\sqrt{\dfrac{6}{150}}\) = \(\sqrt{\dfrac{1}{25}}\) = \(\dfrac{1}{5}\)
a) \(\sqrt{10}.\sqrt{40}\)
=\(\sqrt{10.40}\)
=\(\sqrt{400}\)
=20
b) \(\sqrt{5.}\sqrt{45}\)
=\(\sqrt{5.45}\)
=\(\sqrt{225}\)
=\(\sqrt{15}\)
c) \(\sqrt{52.}\sqrt{13}\)
=\(\sqrt{52.13}\)
=\(\sqrt{676}\)
=26
d)\(\sqrt{2.}\sqrt{162}\)
=\(\sqrt{2.162}\)
=\(\sqrt{324}\)
=18
\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)
\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)
\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)
\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)
\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
Ta thấy các số trong căn bậc hai đều lớn hơn 0, áp dụng \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
a) \(\sqrt{7}\cdot\sqrt{63}=\sqrt{7\cdot63}=21\)
b) \(\sqrt{2,5}\cdot\sqrt{30}\cdot\sqrt{48}=\sqrt{2,5\cdot30\cdot48}=60\)
c) \(\sqrt{0,4}\cdot\sqrt{6,4}=\sqrt{0,4\cdot6,4}=1,6\)
d) \(\sqrt{2,7}\cdot\sqrt{5}\cdot\sqrt{1,5}=\sqrt{2,7\cdot5\cdot1,5}=4,5\)
a. \(\sqrt{7}.\sqrt{63}=\sqrt{7.63}=\sqrt{441}=21\)
b.\(\sqrt{2,5}.\sqrt{30}.\sqrt{48}=\sqrt{2,5.30.48}=\sqrt{3600}=60\)
c.\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{2,56}=1,6\)
d.\(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{2,7.5.1,5}=\sqrt{20,25}=4,5\)