K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Chọn A

29 tháng 1 2019

Chọn A

15 tháng 3 2018

Chọn D

12 tháng 1 2018

Chọn D

20 tháng 5 2018

Chọn A

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

Đổi 2 năm là 24 tháng. Lãi suất 6%/năm tương ứng với $0,5$ %/tháng

Giả sử phải gửi $x$ (triệu đồng)

Ta có: $x(1+\frac{0,5}{100})^{24}=500$

$\Rightarrow x=\frac{500}{1,005^{24}}=443,6$ (triệu đồng) 

$\Rightarrow x=\frac{500}{1,06^2}=445$ (triệu đồng)

27 tháng 11 2019

Chọn D

21 tháng 1 2018

Đáp án C.

Giả sử bác An gửi số tiền tối thiểu hàng tháng là T (đồng). Đặt r = 0,45%.

Hết tháng thứ nhất bác An nhận được số tiền cả gốc và lãi là

T 1 = T + T . r = T . 1 + r .

Hết tháng thứ hai bác An nhận được số tiền cả gốc và lãi là

T 2 = T . 2 + r + T . 2 + r . r = T . r + 1 2 + r + 1 .

Bằng phương pháp quy nạp toán học, ta chứng minh được rằng sau n tháng gửi tiết kiệm thì bác An nhận được số tiền cả gốc và lãi là

T n = T 1 + r n + 1 + r n − 1 + ... + 1 + r .

Dễ dàng tính được T n = T r . 1 + r . 1 + r n − 1 .  

Suy ra số tiền lãi sau n tháng gửi tiết kiệm là

L n = T n − T n = T r . 1 + r . 1 + r n − 1 − T n .

Theo giả thiết, ta có n = 36 , L 36 ≥ 30   000   000.  Suy ra  T ≥ 9   493   000.

Phân tích phương án nhiễu.

Phương án A: Sai do HS tính chỉ gửi 35 tháng.

Phương án B: Sai do HS sử dụng công thức của bài toán tính lãi kép và hiểu đề bài yêu cầu số tiền thu được sau 3 năm đủ để mua xe máy có trị giá 30 triệu đồng nên tìm được T = 25 523 000.

Phương án C: Sai do HS giải đúng như trên nhưng lại làm tròn T = 9 492 000.

4 tháng 2 2018

Chọn D.

Áp dụng công thức Tn= M( 1+ r) n vớiTn= 5; r= 0,007 và n= 36 thì số tiền người đó cần gửi vào ngân hàng trong 3 năm (36 tháng) là:

triệu đồng.

Chọn D