Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm xuôi thì đơn giản, tính \(F'\left(x\right)\) là xong (chịu khó biến đổi)
Làm ngược thì nhìn biểu thức hơi thiếu thân thiện
\(\int\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}dx=\int\dfrac{2\sqrt{2}\left(x^2-1\right)}{\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)}dx\)
Phân tách hệ số bất định:
\(\dfrac{2\sqrt{2}\left(x^2-1\right)}{\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)}=\dfrac{a\left(2x-\sqrt{2}\right)}{x^2-x\sqrt{2}+1}+\dfrac{b\left(2x+\sqrt{2}\right)}{x^2+x\sqrt{2}+1}\)
Quan tâm tử số: \(a\left(2x-\sqrt{2}\right)\left(x^2+x\sqrt{2}+1\right)+b\left(2x+\sqrt{2}\right)\left(x^2-x\sqrt{2}+1\right)\)
\(=2\left(a+b\right)x^3+\sqrt{2}\left(a-b\right)x^2+\sqrt{2}\left(b-a\right)\)
Đồng nhất 2 tử số: \(\left\{{}\begin{matrix}a+b=0\\a-b=2\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)
Do đó:
\(\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}=\dfrac{2x-\sqrt{2}}{x^2-x\sqrt{2}+1}-\dfrac{2x+\sqrt{2}}{x^2+x\sqrt{2}+1}\)
Cái tìm hệ số bất định ấy ạ, tại sao lại tách về 2x- căn 2 vậy anh?
Hệ số bất định:
\(\dfrac{x^2-3}{x\left(x^2+1\right)\left(x^2+2\right)}=\dfrac{a}{x}+\dfrac{bx}{x^2+1}+\dfrac{cx}{x^2+2}\)
dạ ko ạ,em hỏi mấy anh chị cho nhanh thôi ạ
\(2xy+x-3y=1\\ \Leftrightarrow4xy+2x-6y-2=0\\ \Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=-1\\ \Leftrightarrow\left(2x-3\right)\left(2y+1\right)=-1\)
Từ đó bạn suy ra các trường hợp thôi
\(xy-2y=x^2+4\)
\(\Leftrightarrow y\left(x-2\right)=x^2+4\)
- Với \(x=2\) không phải nghiệm của pt
- Với \(x\ne2\)
\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)
Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)
\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)
Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:
\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)
Đây là định lý về giá trị trung bình trong tích phân.
Việc chứng minh nó khá vô nghĩa, vì giống như chứng minh công thức tích phân vậy, đều xuất phát từ việc chia nhỏ vô hạn và tính tổng.
Cho nên, chứng minh để làm gì?
Dạ, tại nó nằm trong phần mở đầu bdt tích phân và liên uan đến định lý Lagrange nên em nghĩ rằng nó sẽ áp dụng vô bài :>?