K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2021

Đây là định lý về giá trị trung bình trong tích phân.

Việc chứng minh nó khá vô nghĩa, vì giống như chứng minh công thức tích phân vậy, đều xuất phát từ việc chia nhỏ vô hạn và tính tổng.

Cho nên, chứng minh để làm gì?

25 tháng 2 2021

Dạ, tại nó nằm trong phần mở đầu bdt tích phân và liên uan đến định lý Lagrange nên em nghĩ rằng nó sẽ áp dụng vô bài :>?

NV
21 tháng 2 2021

Làm xuôi thì đơn giản, tính \(F'\left(x\right)\) là xong (chịu khó biến đổi)

Làm ngược thì nhìn biểu thức hơi thiếu thân thiện

\(\int\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}dx=\int\dfrac{2\sqrt{2}\left(x^2-1\right)}{\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)}dx\)

Phân tách hệ số bất định:

\(\dfrac{2\sqrt{2}\left(x^2-1\right)}{\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)}=\dfrac{a\left(2x-\sqrt{2}\right)}{x^2-x\sqrt{2}+1}+\dfrac{b\left(2x+\sqrt{2}\right)}{x^2+x\sqrt{2}+1}\)

Quan tâm tử số: \(a\left(2x-\sqrt{2}\right)\left(x^2+x\sqrt{2}+1\right)+b\left(2x+\sqrt{2}\right)\left(x^2-x\sqrt{2}+1\right)\)

\(=2\left(a+b\right)x^3+\sqrt{2}\left(a-b\right)x^2+\sqrt{2}\left(b-a\right)\)

Đồng nhất 2 tử số: \(\left\{{}\begin{matrix}a+b=0\\a-b=2\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Do đó:

\(\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}=\dfrac{2x-\sqrt{2}}{x^2-x\sqrt{2}+1}-\dfrac{2x+\sqrt{2}}{x^2+x\sqrt{2}+1}\)

21 tháng 2 2021

Cái tìm hệ số bất định ấy ạ, tại sao lại tách về 2x- căn 2 vậy anh? 

NV
24 tháng 2 2021

Hệ số bất định:

\(\dfrac{x^2-3}{x\left(x^2+1\right)\left(x^2+2\right)}=\dfrac{a}{x}+\dfrac{bx}{x^2+1}+\dfrac{cx}{x^2+2}\)

17 tháng 4 2021

Đây là toán lớp 12 à?

dạ ko ạ,em hỏi mấy anh chị cho nhanh thôi ạ

10 tháng 11 2021

\(2xy+x-3y=1\\ \Leftrightarrow4xy+2x-6y-2=0\\ \Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=-1\\ \Leftrightarrow\left(2x-3\right)\left(2y+1\right)=-1\)

Từ đó bạn suy ra các trường hợp thôi

 

NV
11 tháng 11 2021

\(xy-2y=x^2+4\)

\(\Leftrightarrow y\left(x-2\right)=x^2+4\)

- Với \(x=2\) không phải nghiệm của pt

- Với \(x\ne2\)

\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)

Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)

\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)

Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:

\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)

4 tháng 2 2021
∞∞=? +∞ nha anh trai =))
4 tháng 2 2021
+∞ nha anh trai =))