Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tính diện tích mặt đáy từ công thức: V=1/3. Sđ. h
- Tính độ dài cạnh mặt đáy: Sđ = a^2 => a= √Sđ
- Vì là hình c/đều nên mặt bên là t/giác đều => Cạnh mặt đáy bằng cạnh bên và trung tuyến cũng là đường cao, vẽ đường trung tuyến của mặt bên, tính 1/2 cạnh mặt đáy.
- Áp dụng Py-ta-go tính đường cao vừa vẽ theo công thức :
BC^2=AB^2+AC^2
- tính diện tích mặt bên nhân với 4 + với dt đáy ra diện tích hình chóp cần tìm.
a) Diện tích xung quanh của hình chóp tam giác đều là:
\(\frac{{99.40}}{2}.3 = 5940\) (\(c{m^2}\))
Diện tích đáy của hình chóp là:
\(\frac{{40.34,6}}{2} = 692\) (\(c{m^2}\))
Diện tích toàn phần của hình chóp là:
\(5940 + 692 = 6632\) (\(c{m^2}\))
Thể tích của hình chóp là:
\(\frac{1}{3}.692.98,3 \approx 22674,53\) (\(c{m^3}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là:
\(\frac{{91.120}}{2}.4 = 21840\) (\(c{m^2}\))
Diện tích đáy của hình chóp là:
\(120.120 = 14400\) (\(c{m^2}\))
Diện tích toàn phần của hình chóp là:
\(21840 + 14400 = 36240\) (\(c{m^2}\))
Thể tích của hình chóp là:
\(\frac{1}{3}.14400.68,4 = 328320\) (\(c{m^3}\))
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
a: Diện tích đáy là:
\(44.002\cdot3:5.88=22.45\left(cm^2\right)\)
b: Chiều cao của hình chóp tam giác đều là:
\(12\sqrt{3}\cdot\dfrac{3}{9\sqrt{3}}=4\left(cm\right)\)