K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

a/ Đặt \(x^2+5x=t\)

\(\Rightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5x=6\\x^2+5x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-6=0\\x^2+5x+4=0\end{matrix}\right.\) (bấm casio)

b/ Đặt \(x^2-x=t\)

\(\Leftrightarrow t^2-2=t\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=-1\\x^2-x=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-x-2=0\end{matrix}\right.\) (casio)

c/ \(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(x^2+x=t\)

\(\Rightarrow t\left(t-2\right)-24=0\Rightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+4=0\left(vn\right)\end{matrix}\right.\) (casio)

10 tháng 7 2023

\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)

\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)

\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)

\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)

a: =>(x+2-3)(x+2+3)=0

=>(x-1)(x+5)=0

=>x=1 hoặc x=-5

b: =>(x-1)^2=25

=>x-1=5 hoặc x-1=-5

=>x=-4 hoặc x=6

c: =>25x^2+10x+1-25x^2+9=30

=>10x+10=30

=>x+1=3

=>x=2

d: =>x^3-1-x(x^2-4)=5

=>x^3-1-x^3+4x=5

=>4x=6

=>x=3/2

10 tháng 3 2019

a/ Đặt (x^2 - 5x) = a thì ta có

a^2 + 10a + 24 = 0

<=> (a + 4)(a + 6) = 0

Làm nốt

10 tháng 3 2019

b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680

<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680

<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680

Đặt x^2 - 11x + 28 = a thì ta có

a(a + 2) = 1680

<=> (a - 40)(a + 42) = 0

Làm nốt

a: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

1 tháng 9 2018

a) ta có : \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left(x\left(x-2\right)-3\left(x+2\right)\right)\left(x\left(x-1\right)-4\left(x-1\right)\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\) vậy \(x=1;x=2;x=3;x=4\)

b) ta có : \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)=0\)

\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x+1-3\right)=0\)

ta có : \(x^2+x+5>0\forall x\)

\(\Rightarrow pt\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy \(x=1;x=-2\)

24 tháng 6 2018

b) \(\left(3x^2-2x+1\right).\left(3x^2+2x+1\right)-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-\left(2x+1\right)^2-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-[\left(2x\right)^2+4x+1]-[\left(3x^2\right)^2+6x^2+1]\)=\(\left(2x\right)^2+4x+1+6x^2-1\)=\(4x^2+4x+6x^2\)=\(10x^2+4x\)

c)\(\left(x^2-5x+2\right)^2-2\left(x^2-5x+2\right)\left(5x-2\right)+\left(5x-2\right)^2\)=\([\left(x^2-5x+2\right)-\left(5x-2\right)]^2\)=\(x^2-5x+2-5x+2\)=\(x^2-10x+4\)=\(x^2-4x+2^2-6x\)=\(\left(x-2\right)^2-6x\)

a: \(=\left(2x^2-x\right)^2-5\left(2x^2-x\right)-6\)

\(=\left(2x^2-x\right)^2-6\left(2x^2-x\right)+\left(2x^2-x-6\right)\)

\(=\left(2x^2-x-6\right)\left(2x^2-x+1\right)\)

\(=\left(2x^2-4x+3x-6\right)\left(2x^2-x+1\right)\)

\(=\left(x-2\right)\left(2x+3\right)\left(2x^2-x+1\right)\)

b: \(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x-6\right)\left(5x^2-2x+1\right)\)

d: \(=\left(x+2\right)\left(x-1\right)\left(x+3\right)\left(x+6\right)-28\)

\(=\left(x^2+5x+6\right)\left(x^2+5x-6\right)-28\)

\(=\left(x^2+5x\right)^2-36-28\)

\(=\left(x^2+5x\right)^2-64\)

\(=\left(x^2+5x+8\right)\left(x^2+5x-8\right)\)

27 tháng 11 2021

A=x3+1+2x+2-x3-2x=3

B=5x2+36x+7-5x2+5x=41x+7

4 tháng 10 2017

a) \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)

Đặt \(x^2+x=y\) ta được:

\(y^2-14y+24\)

\(=x\left(y-12\right)-2\left(y-12\right)\)

\(=\left(y-2\right)\left(y-12\right)\)

Thay ngược trở lại:

\(\left(x^2+x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x-3\right)\left(x+4\right)\)

d) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+10\right)+1\)

Đặt \(x^2+5x+4=a\) được:

\(a\left(a+6\right)+1\)

\(=a^2+6a+1\)

\(=a^2+2.a.3+3^2-8\)

\(=\left(a+3\right)^2-\left(\sqrt{8}\right)^2\)

\(=\left(a+3-\sqrt{8}\right)\left(a+3+\sqrt{8}\right)\)

Mấy câu kia tương tự.

4 tháng 10 2017

thanks

a) Ta có: \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left(6x-2\right)^2-2\cdot\left(6x-2\right)\left(5x-2\right)+\left(5x-2\right)^2=0\)

\(\Leftrightarrow\left(6x-2-5x+2\right)^2=0\)

\(\Leftrightarrow x^2=0\)

hay x=0

Vậy: x=0

b) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)-5=0\)

\(\Leftrightarrow x^3-6-x^2+4x=0\)

\(\Leftrightarrow4x-6=0\)

\(\Leftrightarrow4x=6\)

hay \(x=\frac{3}{2}\)

Vậy: \(x=\frac{3}{2}\)

c) Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+27\right)+3x^2-12-2=0\)

\(\Leftrightarrow x^3+3x-15-x^3-27=0\)

\(\Leftrightarrow3x-42=0\)

\(\Leftrightarrow3x=42\)

hay x=14

Vậy: x=14