Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)
\(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)
\(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)
\(\Leftrightarrow m^3=8-12m\)
\(\Leftrightarrow m^3+12m-8=0\)
Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)
Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)
\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)
\(\Leftrightarrow D^3=4+2D\)
\(\Leftrightarrow D^3-2D-4=0\)
\(\Leftrightarrow D^3-4D+2D-4=0\)
\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)
\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)
\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)
Vì [....] > 0 nên D - 2 = 0 <=> D = 2
Ý d làm tương tự nhá
\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)
Dấu " = " xảy ra <=> a=b=c=1/4 ( cái này bạn tự giải rõ nhé)
bn rảnh vc
thế giới tồn tại loại rảnh và xàm l như bn cx tốt :)
cảm ơn về chuyên mục của chúa PaiN nhá :))
ta đã tốn thời gian để share cách giải toán cho những thằng ngu như bạn ? bạn phải biết ơn chứ ?
nếu bạn biết rồi thì biến okay