\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{a}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}-2}-\frac{\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

a,

ĐK :a>0    ;    a  khác 1 , khác 4

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ \)

\(Q=\left(\frac{\sqrt{a}-\sqrt{a+1}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

b,

để Q đạt Giá Trị dương

\(\Rightarrow Q>0\Leftrightarrow\frac{\sqrt{a}-2}{3\sqrt{a}}>0\)

có \(a>0\Leftrightarrow\sqrt{a}>0\Leftrightarrow3\sqrt{a}>0\)

Suy Ra : để Q dương thì \(\sqrt{a}-2>0\)

\(\Leftrightarrow a>4\)   Thỏa mãn ĐK :  a > 0   ;a  khác 1 , khác 4

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

26 tháng 5 2018

B ơi b lấy đề này ở đâu v ạ

3 tháng 9 2018

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\).\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(\left[\left(\frac{\sqrt{a}}{2}\right)^2-2\frac{\sqrt{a}}{2}\frac{1}{2\sqrt{a}}+\left(\frac{1}{2\sqrt{a}}\right)^2\right]\).\(\left[\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{a-1}\right]\)

=\(\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1\right)^2}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)^2}{a-1}\right]\)

=\(\left(\frac{a^2}{4a}-\frac{2a}{4a}+\frac{1}{4a}\right)\).\(\left[\frac{\left[\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\right]\cdot\left[\left(\sqrt{a}-1\right)+\left(\sqrt{a}+1\right)\right]}{a-1}\right]\)

=\(\left(\frac{a^2-2a+1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1-\sqrt{a}+1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right]\)

=\(\frac{\left(a-1\right)^2}{1}\).\(\frac{-4\sqrt{a}}{a-1}\)

=\(\frac{-\left(a-1\right)}{1}\)= - a + 1

hok tốt