Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\neq \pm 1$
a)
\(A=\frac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}.\frac{2x}{5(x-1)}=\frac{4x}{(x-1)(x+1)}.\frac{2x}{5(x-1)}=\frac{8x^2}{5(x-1)^2(x+1)}\)
b) Tại $x=4$ thì: $A=\frac{8.4^2}{5(4-1)^2(4+1)}=\frac{128}{225}$
c)
$A=5$
$\Leftrightarrow \frac{8x^2}{5(x-1)^2(x+1)}=5$
$\Leftrightarrow 8x^2=25(x-1)^2(x+1)$
PT này không phải không giải được nhưng giải phức tạp và nghiệm cực xấu. Nên mình nghĩ bạn đã viết sai đề?
ĐKXĐ: \(x\notin\left\{2;-2;-1\right\}\)
a) Ta có: \(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\dfrac{3\left(x+1\right)}{x\left(x+2\right)}\)
\(=\left(\dfrac{x+4x+8}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{5x+8+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6x+6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)}{x-2}\cdot\dfrac{x}{3\left(x+1\right)}\)
\(=\dfrac{2x}{x-2}\)
b) Để A nguyên thì \(2x⋮x-2\)
\(\Leftrightarrow2x-4+4⋮x-2\)
mà \(2x-4⋮x-2\)
nên \(4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{0;1;3;4;6\right\}\)
Vậy: Khi \(x\in\left\{0;1;3;4;6\right\}\) thì A nguyên
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
Cậu xem lại đề hộ tớ xem là nhân \(\dfrac{2x}{5x-5}\)hay là chia cho \(\dfrac{2x}{5x-5}\)nhé :>
nhân nha