K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}+4}{x\sqrt{x}-3x+2\sqrt{x}}-\dfrac{3\sqrt{x}+3}{-x+\sqrt{x}+2}\right):\left(\dfrac{x-\sqrt{x}-6}{x-3\sqrt{x}}-\dfrac{x-2\sqrt{x}}{x-4\sqrt{x}+4}\right)+\sqrt{x}\)

\(=\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)+\sqrt{x}\)

\(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}+\sqrt{x}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}+\sqrt{x}\)

\(=-\sqrt{x}-1+\sqrt{x}\)

=-1

7 tháng 5 2022

mik cần gấp ạ^^

 

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

a: \(A=\left(\dfrac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+4\sqrt{x}+4-x-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\sqrt{x}}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}+2}{\sqrt{x}}\)

c: 2x-3căn x-5=0

=>2x-5căn x+2căn x-5=0

=>2căn x-5=0

=>x=25/4

Khi x=25/4 thì \(A=\dfrac{2\cdot\dfrac{5}{4}+2}{\dfrac{5}{4}}=\dfrac{18}{5}\)

29 tháng 1 2021

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)  (*)

Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)

 

29 tháng 1 2021

Chép sai đề r bạn ơi!

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)

\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)

=2

b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{x^2}\)

1: \(B=\dfrac{2\sqrt{x}-x-2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{-x}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)

 

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Phần a,b,c bạn có thể tham khảo bài bên dưới. 

Phần d.

ĐKXĐ: $x\geq 0; x\neq 4$

$A>5\Leftrightarrow \frac{x+9}{2\sqrt{x}}>5$ ($x> 0$)

$\Leftrightarrow x+9> 10\sqrt{x}$

$\Leftrightarrow x-10\sqrt{x}+9>0$

$\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-9)>0$

\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} \sqrt{x}-1>0\\ \sqrt{x}-9>0\end{matrix}\right.\\ \left\{\begin{matrix} \sqrt{x}-1<0\\ \sqrt{x}-9<0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>1\\ x>81\end{matrix}\right.\\ \left\{\begin{matrix} 0\leq x< 1\\ 0\leq x< 81\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>81\\ 0\leq x< 1\end{matrix}\right.\)

Kết hợp với đkxđ suy ra $x>81$ hoặc $0< x< 1$

29 tháng 6 2023

a

Với: x \(\ge0,x\) \(\ne4\) có:

\(A=\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right):\left(\dfrac{\left(\sqrt{x}+2\right)^2}{x-4}-\dfrac{\left(\sqrt{x}-2\right)^2}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)

\(=\left(\dfrac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4}{x-4}-\dfrac{x-4\sqrt{x}+4}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)

\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-6\sqrt{x}}{x-4}\right)\)

\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{2\sqrt{x}}{x-4}\right)\)

\(=\dfrac{\left(x+9\right)\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}=\dfrac{x+9}{2\sqrt{x}}\)

b

Giải \(x^2-5x+4=0\)

Nhẩm nghiệm: a + b + c = 0 (1 - 5 + 4 = 0)

\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{4}{1}=4\)

Thay x = 1 vào A:

\(A=\dfrac{1+9}{2\sqrt{1}}=\dfrac{10}{2}=5\)

Thay x = 4 vào A:

\(A=\dfrac{4+9}{2.\sqrt{4}}=\dfrac{13}{2.2}=\dfrac{13}{4}\)

c

ĐK: x > 0

\(A=0\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}=0\)

=> \(x+9=0\Rightarrow x=-9\) (không thỏa mãn)

Vậy không xác định được giá trị x

d

ĐK: x > 0 

\(A>5\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}>5\)

\(\Leftrightarrow x+9>5.2\sqrt{x}\Leftrightarrow x+9>10\sqrt{x}\)

\(\Leftrightarrow\left(x+9\right)^2>\left(10\sqrt{x}\right)^2=100x\)

<=> \(x^2+18x+81-100x>0\)

<=> \(x^2-82x+81>0\)

<=> \(x^2-81x-x+81>0\)

<=> \(x\left(x-81\right)-\left(x-81\right)>0\)

<=> \(\left(x-1\right)\left(x-81\right)>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1>0\\x-81>0\end{matrix}\right.\\\left[{}\begin{matrix}x-1< 0\\x-81< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x>81\end{matrix}\right.\\\left[{}\begin{matrix}x< 1\\x< 81\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>81\\x< 81\end{matrix}\right.\)

 

Vậy để A > 5 thì x > 81 và 0 < x < 81