\(a,\left|-2x+1,5\right|=\frac{1}{4}\)

\(b,\frac{3}{2}-\left|1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

a) \(\left|-2x+1,5\right|=\frac{1}{4}\)
\(\Rightarrow\left|-2x+1,5\right|\in\text{{}\frac{1}{4};-\frac{1}{4}\)}
Nếu, \(-2x+1,5=\frac{1}{4}\)
                      \(-2x=-\frac{5}{4}\)
                             \(x=\frac{5}{8}\)
Nếu, \(-2x+1,5=-\frac{1}{4}\)
                      \(-2x=-\frac{7}{4}\)
                             \(x=\frac{7}{8}\)
Vậy \(x\in\text{{}\frac{5}{8};\frac{7}{8}\)}
        

1 tháng 8 2019

b) \(\frac{3}{2}-\left|1\frac{1}{4}+3x\right|=\frac{1}{4}\)
               \(-\left|\frac{5}{4}+3x\right|=\frac{1}{4}-\frac{3}{2}\)
               \(-\left|\frac{5}{4}+3x\right|=-\frac{5}{4}\)
                   \(\left|\frac{5}{4}+3x\right|=\frac{5}{4}\)
\(\Rightarrow\left|\frac{5}{4}+3x\right|\in\text{{}\frac{5}{4};-\frac{5}{4}\)}
Nếu, \(\frac{5}{4}+3x=\frac{5}{4}\)
                     \(3x=0\)
                        \(x=0\)
Nếu, \(\frac{5}{4}+3x=-\frac{5}{4}\)
                     \(3x=-\frac{5}{2}\)
                        \(x=-\frac{5}{6}\)
Vậy \(x\in\text{{}0;-\frac{5}{6}\)}

a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)

\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)

hay x=5

Vậy: x=5

b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)

\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)

\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)

hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)

\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)

Vậy: \(x=\frac{29}{10}\)

c) \(10\cdot3^{x+2}-3^x=89\)

\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)

\(\Leftrightarrow3^x\left(90-1\right)=89\)

\(\Leftrightarrow3^x=1\)

hay x=0

Vậy: x=0

d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)

\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)

\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)

\(\Leftrightarrow2x-\frac{19}{27}=0\)

\(\Leftrightarrow2x=\frac{19}{27}\)

hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)

Vậy: \(x=\frac{19}{54}\)

e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)

\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)

b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)

16 tháng 10 2019

e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)

Vậy ....

3 tháng 8 2019

a,\(\left(x-\frac{2}{3}\right),\left(x+\frac{1}{1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2}{3}\\x+\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-1}{4}\end{matrix}\right.\)

b,\(\left(x-\frac{2}{3}\right)\left(2x-\frac{3}{4}\right)=\left(3x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\)

\(\Leftrightarrow2x^2-\frac{3}{4}x-\frac{4}{3}x+\frac{1}{2}=3x^2+2x+\frac{1}{2}x+\frac{1}{3}\)

\(\Leftrightarrow2x^2-\frac{25}{12}x+\frac{1}{2}=3x^2+\frac{5}{2}x+\frac{1}{3}\)

\(\Leftrightarrow24x^2-25x+6=36x^2+30x+4\)

\(\Leftrightarrow24x^2-25x+6-36x^2-30x-4=0\)

\(\Leftrightarrow-12x^2-55x+2=0\)

\(\Leftrightarrow12x^2+55x-2=0\)

\(\Leftrightarrow x=\frac{-55\pm\sqrt{55^2-4.12\left(-2\right)}}{2.12}\)

\(\Leftrightarrow\frac{-55\pm\sqrt{3025+96}}{24}\)

\(\Leftrightarrow\frac{-55\pm\sqrt{3121}}{24}\)

\(\Leftrightarrow\frac{-55+\sqrt{3121}}{24}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-55+\sqrt{3121}}{24}\\\frac{-55-\sqrt{3121}}{24}\end{matrix}\right.\)

12 tháng 9 2019

a, \(\left(2x-1\right)=-8\)

\(2x=-8+1\)

\(2x=-7\)

\(x=-7:2\)

\(x=-3,5\)

12 tháng 9 2019

a) (2x - 1) = -8

⇒ 2x = -8 + 1

⇒ 2x = -7

b) (3x - 2)\(^2\) = \(\frac{1}{49}\)

Ta có: \(\frac{1}{49}\) = \(\frac{1}{7}\). \(\frac{1}{7}\) hoặc \(\frac{1}{49}\) = \(\frac{-1}{7}\). \(\frac{-1}{7}\)

TH1: 3x - 2 = \(\frac{1}{7}\) TH2: 3x - 2 = \(\frac{-1}{7}\)

⇒ 3x = \(\frac{1}{7}\)+2 ⇒ 3x = \(\frac{-1}{7}\)+2

⇒ 3x = \(\frac{15}{7}\) ⇒ 3x = \(\frac{13}{7}\)

⇒ x = \(\frac{5}{7}\) ⇒ x = \(\frac{13}{21}\)

Vậy: x = \(\frac{5}{7}\) hoặc x = \(\frac{13}{21}\)

5 tháng 9 2016

a)|x+0,573|=2

=>x+0,573=2 hoặc -2

Xét x+0,573=2

=>x=1,427

Xét x+0,573=-2

=>x=-2,573

 

5 tháng 9 2016

a) | x + 0,573 | = 2

\(\Rightarrow\)x + 0,573 = 2 hoặc x + 0,573 = -2

+) x + 0,573 = 2\(\Rightarrow\)x = 1,427

+) x + 0,573 = -2\(\Rightarrow\)x = -2,573

Vậy x = 1,427 hoặc -2,573

b) \(\left|x+\frac{1}{3}\right|-4=-1\)

\(\Rightarrow\left|x+\frac{1}{3}\right|=3\)

\(\Rightarrow x+\frac{1}{3}=3\) hoặc \(x+\frac{1}{3}=-3\)

+) \(x+\frac{1}{3}=3\Rightarrow x=\frac{8}{3}\)

+) \(x+\frac{1}{3}=-3\Rightarrow x=\frac{-10}{3}\)

Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{-10}{3}\)

Các phần khác làm tương tự nhé bạn

8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)