Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)
⇒\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
⇒\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)
hay x=5
Vậy: x=5
b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)
⇔\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)
⇔\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)
hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)
⇔\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)
Vậy: \(x=\frac{29}{10}\)
c) \(10\cdot3^{x+2}-3^x=89\)
\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)
\(\Leftrightarrow3^x\left(90-1\right)=89\)
\(\Leftrightarrow3^x=1\)
hay x=0
Vậy: x=0
d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)
⇒\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)
\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)
\(\Leftrightarrow2x-\frac{19}{27}=0\)
\(\Leftrightarrow2x=\frac{19}{27}\)
hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)
Vậy: \(x=\frac{19}{54}\)
e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)
\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
a,\(\left(x-\frac{2}{3}\right),\left(x+\frac{1}{1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2}{3}\\x+\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-1}{4}\end{matrix}\right.\)
b,\(\left(x-\frac{2}{3}\right)\left(2x-\frac{3}{4}\right)=\left(3x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\)
\(\Leftrightarrow2x^2-\frac{3}{4}x-\frac{4}{3}x+\frac{1}{2}=3x^2+2x+\frac{1}{2}x+\frac{1}{3}\)
\(\Leftrightarrow2x^2-\frac{25}{12}x+\frac{1}{2}=3x^2+\frac{5}{2}x+\frac{1}{3}\)
\(\Leftrightarrow24x^2-25x+6=36x^2+30x+4\)
\(\Leftrightarrow24x^2-25x+6-36x^2-30x-4=0\)
\(\Leftrightarrow-12x^2-55x+2=0\)
\(\Leftrightarrow12x^2+55x-2=0\)
\(\Leftrightarrow x=\frac{-55\pm\sqrt{55^2-4.12\left(-2\right)}}{2.12}\)
\(\Leftrightarrow\frac{-55\pm\sqrt{3025+96}}{24}\)
\(\Leftrightarrow\frac{-55\pm\sqrt{3121}}{24}\)
\(\Leftrightarrow\frac{-55+\sqrt{3121}}{24}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-55+\sqrt{3121}}{24}\\\frac{-55-\sqrt{3121}}{24}\end{matrix}\right.\)
a, \(\left(2x-1\right)=-8\)
\(2x=-8+1\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
a) (2x - 1) = -8
⇒ 2x = -8 + 1
⇒ 2x = -7
b) (3x - 2)\(^2\) = \(\frac{1}{49}\)
Ta có: \(\frac{1}{49}\) = \(\frac{1}{7}\). \(\frac{1}{7}\) hoặc \(\frac{1}{49}\) = \(\frac{-1}{7}\). \(\frac{-1}{7}\)
TH1: 3x - 2 = \(\frac{1}{7}\) TH2: 3x - 2 = \(\frac{-1}{7}\)
⇒ 3x = \(\frac{1}{7}\)+2 ⇒ 3x = \(\frac{-1}{7}\)+2
⇒ 3x = \(\frac{15}{7}\) ⇒ 3x = \(\frac{13}{7}\)
⇒ x = \(\frac{5}{7}\) ⇒ x = \(\frac{13}{21}\)
Vậy: x = \(\frac{5}{7}\) hoặc x = \(\frac{13}{21}\)
a)|x+0,573|=2
=>x+0,573=2 hoặc -2
Xét x+0,573=2
=>x=1,427
Xét x+0,573=-2
=>x=-2,573
a) | x + 0,573 | = 2
\(\Rightarrow\)x + 0,573 = 2 hoặc x + 0,573 = -2
+) x + 0,573 = 2\(\Rightarrow\)x = 1,427
+) x + 0,573 = -2\(\Rightarrow\)x = -2,573
Vậy x = 1,427 hoặc -2,573
b) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=3\)
\(\Rightarrow x+\frac{1}{3}=3\) hoặc \(x+\frac{1}{3}=-3\)
+) \(x+\frac{1}{3}=3\Rightarrow x=\frac{8}{3}\)
+) \(x+\frac{1}{3}=-3\Rightarrow x=\frac{-10}{3}\)
Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{-10}{3}\)
Các phần khác làm tương tự nhé bạn
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
a) \(\left|-2x+1,5\right|=\frac{1}{4}\)
\(\Rightarrow\left|-2x+1,5\right|\in\text{{}\frac{1}{4};-\frac{1}{4}\)}
Nếu, \(-2x+1,5=\frac{1}{4}\)
\(-2x=-\frac{5}{4}\)
\(x=\frac{5}{8}\)
Nếu, \(-2x+1,5=-\frac{1}{4}\)
\(-2x=-\frac{7}{4}\)
\(x=\frac{7}{8}\)
Vậy \(x\in\text{{}\frac{5}{8};\frac{7}{8}\)}
b) \(\frac{3}{2}-\left|1\frac{1}{4}+3x\right|=\frac{1}{4}\)
\(-\left|\frac{5}{4}+3x\right|=\frac{1}{4}-\frac{3}{2}\)
\(-\left|\frac{5}{4}+3x\right|=-\frac{5}{4}\)
\(\left|\frac{5}{4}+3x\right|=\frac{5}{4}\)
\(\Rightarrow\left|\frac{5}{4}+3x\right|\in\text{{}\frac{5}{4};-\frac{5}{4}\)}
Nếu, \(\frac{5}{4}+3x=\frac{5}{4}\)
\(3x=0\)
\(x=0\)
Nếu, \(\frac{5}{4}+3x=-\frac{5}{4}\)
\(3x=-\frac{5}{2}\)
\(x=-\frac{5}{6}\)
Vậy \(x\in\text{{}0;-\frac{5}{6}\)}