K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\:x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5=5\)

Vậy biểu thức ko phụ thuộc vào biến x 

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)+2x^4\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+y^3x-y^4+2x^4\)

\(=3x^4-y^4\)

9 tháng 7 2020

mọi người giúp em nhanh với 

15 tháng 10 2023

Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)

\(=-x^2+y^2+\left(-x+y\right)-2+3\)

\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)

\(=\left(x-y\right)\left(-x-y-1\right)+1\)

\(=\left(x-y\right)\left(1-1\right)+1=1\)

AH
Akai Haruma
Giáo viên
20 tháng 9 2021

Lời giải:

$A=(x^4+x^3-x^2-2x^2-2x+2)-(x^4+x^3-3x^2-2x)$

$=(x^4+x^3-3x^2-2x+2)-(x^4+x^3-3x^2-2x)$

$=(x^4+x^3-3x^2-2x)+2-(x^4+x^3-3x^2-2x)$

$=2$ khong phụ thuộc vào giá trị của biến $x$ (đpcm)

19 tháng 9 2021

\(A=\left(x^2-2\right)\left(x^2+x+1\right)-x\left(x^3+x^2-3x-2\right)=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x=2\left(đpcm\right)\)

1 tháng 6 2019

D   =   ( x 3   +   y 3 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2   –   x y )     =   ( x   +   y ) [ x ( x   –   y )   –   y ( x   –   y ) ]     =   ( x   +   y ) ( x   –   y ) 2

 

Vì x = y ó x – y = 0 nên D   =   ( x   +   y ) ( x   –   y ) 2   =   0

Đáp án cần chọn là: D

Bạn xem lại đề bài b nhé.

undefined

30 tháng 7 2021

a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)

\(=2-6xy-3+6xy=-1\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)

b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

 \(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)

 

\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(x^2-xy+y^2\right)-3\left(1-2xy\right)\)

\(=2x^2-2xy+2y^2-3+6xy\)

\(=2x^2+4xy+2y^2-3\)