Ai pk co bn hcn k

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

vc  gì thế

28 tháng 2 2017

con mẹ mày

16 tháng 9 2018

mik tịck cho

ko gui cau hoi linh tinh nha

6 tháng 12 2016

mk ko hiểu tẹo nào cả

2 tháng 5 2017

Thung lũng

2 tháng 5 2017

thung lũng

30 tháng 9 2016

\(128+567=695\)

\(6475648-46574=6429074\)

Ai k... k lại nghe

30 tháng 9 2016

128 + 567 =695

6475648 - 46574 = 6429074

 Chưa thấy ai ngu như Nguyễn Đình Dũng hết cả

6 tháng 9 2015

vì AMN và MNB bằng nhau ( cậu hiểu ko )

NHìn vào hình vẽ ta có thế thấy MNB = 1/2 MNCB

SUy ra AMN = MNB = \(\frac{1}{2}\)MNBC

11 tháng 9 2020

1=1 -> Đúng

11 tháng 9 2020

Tùy trường hợp

@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)\(\Rightarrow a=x^2-4x+4\)Như vậy , vs mỗi...
Đọc tiếp

@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)

\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)

\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)

Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)

\(\Rightarrow a=x^2-4x+4\)

Như vậy , vs mỗi giá trị của a , ta tìm được nhiều nhất 2 giá trị của x

\(Pt\left(1\right)\Leftrightarrow\left(a-26\right)\left(a-16\right)=m\)

              \(\Leftrightarrow a^2-42a+416=m\)

              \(\Leftrightarrow a^2-42a+416-m=0\)(2)

Để pt ban đầu có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}441-416+m>0\\42>0\left(Luonđung\right)\\416-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-25\\m< 416\end{cases}}\Leftrightarrow-25< m< 416\)

Khi đó theo hệ thức Vi-ét \(\hept{\begin{cases}a_1+a_2=42\\a_1a_2=416-m\end{cases}}\)

Với giá trị của m vừa tìm đc ở trên thì mỗi giá trị a1 và a2 sẽ nhận 2 giá trị của x 

Giả sử a1 nhận 2 nghiệm x1 và xcòn a2 nhận 2 nghiệm x3 và x4 (đoạn này ko hiểu ib nhá)

*Xét a1 nhận x1 và x2 

Khi đó phương trình \(a_1=x^2-4x+4\) sẽ nhận 2 nghiệm x1 và x2

 \(pt\Leftrightarrow x^2-4x+4-a_1=0\)(Đoạn này ko cần Delta nữa vì mình đã giả sử có nghiệm rồi)

Theo hệ thức Vi-ét \(\)\(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=4-a_1\end{cases}}\)

*Xét a2 nhận x3 và x4

Tương tự trường hợp trên ta cũng đc \(\hept{\begin{cases}x_3+x_4=4\\x_3x_4=4-a_2\end{cases}}\)

Ta có \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)

\(\Leftrightarrow\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)

 \(\Leftrightarrow\frac{4}{4-a_1}+\frac{4}{4-a_2}=4\)

\(\Leftrightarrow\frac{1}{4-a_1}+\frac{1}{4-a_2}=1\)

\(\Leftrightarrow\frac{4-a_2+4-a_1}{\left(4-a_1\right)\left(4-a_2\right)}=1\)

\(\Leftrightarrow\frac{8-\left(a_1+a_2\right)}{16-4\left(a_1+a_2\right)+a_1a_2}=1\)

\(\Leftrightarrow\frac{8-42}{16-4.42+416-m}=1\)

\(\Leftrightarrow\frac{-34}{264-m}=1\)

\(\Leftrightarrow-34=264-m\)

\(\Leftrightarrow m=298\)(Thỏa mãn)

Tính toán có sai sót gì thì tự fix nhá :V

 

1
15 tháng 12 2021

không phải toán lớp một nha bạn