
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

Ta có :
\(S=1.2+2.3+...+49.50\)
\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)
\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)
\(\Leftrightarrow3S=49.50.51\)
\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)
S=1 . 2 + 2.3+3.4+.....+49.100
3S=1.2.3+2.3.3+3.4.3+....+49.50.3
3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)
3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51
3S=49.50.51
S=49.50.51 / 3
S=41650

a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)

\(f\left(x\right)=9-3x^3-2x^3+x^2+4x-6\)
\(g\left(x\right)=x^3-6x^3+2x^3+4x^2+7x-3x+3\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=9-3x^3-2x^3+x^2+4x-6-\left(x^3-6x^3+2x^3+4x^2+7x-3x+3\right)\)
Bạn tự phá dấu và trừ ra nhé, ghi ở đây dài lắm, kết quả bằng :
\(-2x^3-3x^2\)
Ta có:
\(f\left(x\right)=-5x^3+x^2+4x+3\)
\(g\left(x\right)=-3x^3+4x^2+4x+3\)

b) Vì 50 > 49 nên \(\sqrt{50}\) > \(\sqrt{49}\) = 7
Vì 2 > 1 nên \(\sqrt{2}\) > \(\sqrt{1}\) = 1
\(\Rightarrow\) \(\sqrt{50}\) + \(\sqrt{2}\) > 7 + 1 = 8 (1)
Ta nhận thấy: 50 + 2 = 52 < 64. \(\Rightarrow\) \(\sqrt{50+2}\) < \(\sqrt{64}\) = 8 (2)
Từ (1) và (2) suy ra \(\sqrt{50}\) + \(\sqrt{2}\) > \(\sqrt{50+2}\)
Vậy,...
OK, tôi sẽ giúp bn.
a) Vì 26 > 25 nên \(\sqrt{26}\) > \(\sqrt{25}\) = 5
Vì 17 > 16 nên \(\sqrt{17}\) > \(\sqrt{16}\) = 4
\(\Rightarrow\) \(\sqrt{26}\) + \(\sqrt{17}\) > 5 + 4 = 9
Vậy, \(\sqrt{26}\) + \(\sqrt{17}\) > 9