Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}=\frac{3\left(x+1\right)-2\left(y+2\right)+\left(z+2\right)}{3.2-2.3+4}\)
\(=\frac{3x-2y+z+1}{4}=\frac{106}{4}=26,5\)
\(\Leftrightarrow\hept{\begin{cases}x+1=26,5.2=53\\y+2=26,5.3=79,5\\z+2=26,5.4=106\end{cases}}\Leftrightarrow\hept{\begin{cases}x=52\\y=77,5\\z=104\end{cases}}\)
Gọi chiều rộng của hai hình chữ nhật lần lượt là \(a,b\left(cm\right);a,b>0\).
Chiều dài của hai hình là \(x\left(cm\right),x>0\).
Diện tích hai hình lần lượt là \(ax,bx\left(cm^2\right)\).
Vì chiều rộng của chúng lần lượt tỉ lệ với \(3,4\)nên \(\frac{a}{3}=\frac{b}{4}\Leftrightarrow\frac{ax}{3}=\frac{bx}{4}\).
Vì hiệu diện tích của chúng là \(7cm^2\)nên \(bx-ax=7\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{ax}{3}=\frac{bx}{4}=\frac{bx-ax}{4-3}=\frac{7}{1}=7\)
\(\Leftrightarrow\hept{\begin{cases}ax=7.3=21\\bx=7.4=28\end{cases}}\).