Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(D=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=a^2b+ab^2+b^2c+bc^2+ac^2+a^2c+3abc\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
ta có: ab(a + b) + bc(b + c) + ac(a + c) + 3abc
= ab(a + b) + abc + bc(b + c) + abc + ac(a + c) + abc
= ab(a + b + c) + bc(a + b + c) + ac(a + b + c)
= (a + b + c)(ab + bc + ca)
2: =abc-bc-ab-ac+a+b+c-1
=bc(a-1)-ab+b-ac+c+a-1
=bc(a-1)-b(a-1)-c(a-1)+(a-1)
=(a-1)(bc-b-c+1)
=(a-1)(b-1)(c-1)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\\ =a^2b-ab^2+b^2c-bc^2+ac^2-a^2c\\ =\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)-ca\left(a-c\right)\\ =b\left(a-c\right)\left(c+a\right)+b^2\left(a-c\right)-ca\left(a-c\right)\\ =\left(a-c\right)\left(bc+ab+b^2-ca\right)\\ =\left(a-c\right)\left[a\left(b-c\right)-b\left(b-c\right)\right]\\ =\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Tick plz
Co P=ab(a-b) + bc((b-a)+(a-c)) +ac(c-a)
=ab(a-b) -bc(a-b) -bc(c-a) +ac(c-a)
=(a-b)(ab-bc) +(c-a)(ac-bc)
=(a-b) b (a-c) + (c-a) c (a-b)
=(a-b)(a-c)(b-c)
sửa đề thành \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+c^2a+ca^2+2abc\)
\(=ab\left(a+b\right)+\left(b^2c+abc\right)+\left(c^2a+c^2b\right)+\left(a^2c+abc\right)\)
\(=ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+bc+a^2+ca\right)\)
\(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)
\(=\left(a+b\right)\left[b\left(a+c\right)+c\left(c+a\right)\right]\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a\right)\)
\(=\left(a+b+c\right)\left(ab+bc\right)+ca\left(c+a\right)\)
\(=b.\left(a+b+c\right)\left(a+c\right)+ca\left(c+a\right)\)
\(=\left(a+c\right)\left[b.\left(a+b+c\right)+ca\right]\)
\(=\left(a+c\right)\left(ab+b^2+bc+ca\right)\)
\(=\left(a+c\right)\left[a\left(b+c\right)+b\left(b+c\right)\right]\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc\)
\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ac\right)\)
Tham khảo nhé~
thank you