Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì \(\hept{\begin{cases}2a=3b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\\\frac{b}{5}=\frac{c}{4}\end{cases}}\) \(\Rightarrow\hept{\begin{cases}\frac{a}{15}=\frac{b}{10}\\\frac{b}{10}=\frac{c}{8}\end{cases}}\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{8}=\frac{2a}{30}=\frac{2c}{16}=\frac{2a-b-2c}{30-10-16}=\frac{4}{4}=1\)
\(\Rightarrow\hept{\begin{cases}a=15\\b=10\\c=8\end{cases}}\)
Câu 5 :
Vì \(\hept{\begin{cases}a=2b\\b=3c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{1}\\\frac{b}{3}=\frac{c}{1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{6}=\frac{b}{3}\\\frac{b}{3}=\frac{c}{1}\end{cases}}\Rightarrow\frac{a}{6}=\frac{b}{3}=\frac{c}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{6}=\frac{b}{3}=\frac{c}{1}=\frac{2b}{6}=\frac{3c}{3}=\frac{a-2b+3c}{6-6+3}=\frac{6}{3}=2\)
\(\Rightarrow\hept{\begin{cases}a=2.6=12\\b=2.3=6\\c=2.1=2\end{cases}}\)
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau