Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự vẽ hình nha
Xét tg AHB và tg AHC có
AB=AC; góc AHB = góc AHC =90 độ;
Ah cạnh chung
=> tg AHB = tg AHC (ch cgv)
=> BH = HC
=> H là trung điểm BC
Xét tg BKC có
H là trung điểm BC (cmt)
DH//KC ( gt)
=> D là trung điểm BK
( đpcm )
Ầy mk chỉ biết câu a thui mà đằng nào chúng ta mới 2k5 thui biết vận dụng cả lớp 8 là tốt lắm rùi ....!
hình bạn tự vẽ nha
a) trong △ABC có :
AH⊥BC=> AH là đường cao của △ABC
mà △ABC cân tại A
=>AH vừa là đường cao , vừa là đường trung tuyến của △ABC
b)có △ABC cân tại A=> góc ABC=góc ACB
hay góc DBH=góc ACB
mà: HD//AC
=>góc BHD=góc ACB(ĐV)
=> góc DBH=gócBHD
=>△BHD cân tại D
=> BD=DH(1)
có AH⊥BC => △ABH vuông tại H
=> góc BAH+góc ABH=900
mà góc BHD+ góc HAD =900; góc ABH= góc DHB
=>góc DAH= góc DHA
=>△AHD cân tại D
=> DA=DH(2)
từ (1),(2)=> AD=DB(=DH)
=> D là trung điểm của AB
c)trong △ABC có:
AH là đường trung tuyến thứ nhất của △ABC
D là trung điểm của AB=> CD là đường trung tuyến thứ hai của △ABC
E là trung điểm của AC=>BE là đường trung tuyến thứ ba của △ABC
lại có AH và CD cắt nhau tại G
=> G là trọng tâm của △ABC
=> BE đi qua G
=> 3 điểm B,G,E thẳng hàng
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH