Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 chắc ai cũng biết
Bài 2 bạn tham khảo trang 40 trong tài liệu này:
Câu hỏi của Nguyễn Việt Lâm - Toán lớp 6 | Học trực tuyến
Ví dụ câu b:
\(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
\(=\sqrt[3]{27+3.9.\sqrt{2}+3.2.9+2\sqrt{2}}+\sqrt[3]{27-3.9.\sqrt{2}+3.2.9-2\sqrt{2}}\)
\(=\sqrt[3]{\left(3+\sqrt{2}\right)^3}+\sqrt[3]{\left(3-\sqrt{2}\right)^3}\)
\(=6\)
Các câu khác tách tương tự
Bài 3 để ý 2 mẫu số đều có dạng:
\(a^2\pm ab+b^2\)
Do đó nhân cả tử và mẫu với \(a\mp b\) để đưa về hằng đẳng thức
\(\frac{1}{\sqrt[3]{4^2}+\sqrt[3]{4.3}+\sqrt[3]{3^2}}=\frac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)\left(\sqrt[3]{4^2}+\sqrt[3]{4.3}+\sqrt[3]{3^2}\right)}\)
\(=\frac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3}=\sqrt[3]{4}-\sqrt[3]{3}\)
\(\frac{1}{\sqrt[3]{3^2}-\sqrt[3]{3.2}+\sqrt[3]{2^2}}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{3^2}-\sqrt[3]{3.2}+\sqrt[3]{2^2}\right)}\)
\(=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{\left(\sqrt[3]{3}\right)^3+\left(\sqrt[3]{2}\right)^3}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{5}\)
đặt \(\sqrt{x+1}=a\),\(\sqrt[3]{x-2}=b\)
rồi suy ra hệ:
\(\left\{{}\begin{matrix}a+b=3\\a^2+b^3=2x-1\end{matrix}\right.\)
có thiếu đề bài ko đấy bạn , theo mk phải là tam giác vuông chứ
#mã mã#
áp dụng định lí pi-ta-go vào tam giác vuông ABH ta có:
AH2=AB2-BH2=62-32=27
=> AH=\(\sqrt{27}=3\sqrt{3}\left(cm\right)\)
+\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{27}=\frac{1}{36}+\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{AC^2}=\frac{1}{27}-\frac{1}{36}=\frac{1}{108}\)
\(\Rightarrow AC^2=108\)
\(\Rightarrow AC=\sqrt{108}=6\sqrt{3}\left(cm\right)\)
áp dụng định lí pi-ta-go vào tam giác vuông AHC ta có:
HC2=AC2-AH2=108-27=81
=> HC=\(\sqrt{81}=9\left(cm\right)\)
hình như là 9x^2+16y^2 chứ nhỉ
áp dụng bđt cối ta có 3A>= (3x+4y)2=25
B=\(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\)+\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\left(x\ge0,x\ne1\right)\)
\(B=\)\(\left[\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right]+\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right]\)
\(B=\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=2\sqrt{a}+2\)
b, ĐỂ B=\(\sqrt{a}+1< =>2\sqrt{a}+2=\sqrt{a}+1\)
<=>\(\sqrt{a}=-1\)(vô lí)
vậy a\(\in\phi\)
A B C H AB=6cm BH=3cm AH, AC, HC=?
Xét ▲ ABH vuông tại H :
ADĐL pi- ta - go ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2
AH2 = 62 - 32
AH2 = 27
AH = \(\sqrt{27}\)
AC , HC bn tự tính nốt nhé....
3+4=tam + tứ
Tam + tứ= tư + tám
Tư + tám =4+8
4+8=12
Vậy 3+4=12
Thấy đúg thì k nha
a: \(=\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\sqrt{x}+3}:\dfrac{-x+9+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{6}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}=\dfrac{6}{\sqrt{x}-2}\)
b: Để A nguyên thì \(\sqrt{x}-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(x\in\left\{1;16;0;25;64\right\}\)
\(1-\dfrac{x-3\sqrt{x}}{x-9}=1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) chứ nhỉ?
bài này mn ak