Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài IV:
1: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
2: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
=>MO\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔMAO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(3\right)\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD tại C
=>AC\(\perp\)DM tại C
Xét ΔADM vuông tại A có AC là đường cao
nên \(MC\cdot MD=MA^2\left(4\right)\)
Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)
3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)
\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{OAI}=\widehat{OIA}\)
nên \(\widehat{MAI}=\widehat{HAI}\)
=>AI là phân giác của góc HAM
Xét ΔAHM có AI là phân giác
nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)
Xét ΔOHA vuông tại H và ΔOAM vuông tại A có
\(\widehat{HOA}\) chung
Do đó: ΔOHA đồng dạng với ΔOAM
=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)
=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)
Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)
=>\(HO\cdot IM=IO\cdot IH\)
a:
Gọi O là trung điểm của AD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó:ΔACD vuông tại C
Xét tứ giác EFDC có \(\widehat{EFD}+\widehat{ECD}=90^0+90^0=180^0\)
nên EFDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{BCA}\) là góc nội tiếp chắn cung BA
\(\widehat{BDA}\) là góc nội tiếp chắn cung BA
Do đó: \(\widehat{BCA}=\widehat{BDA}\)
mà \(\widehat{BDA}=\widehat{ACF}\)(ECDF là tứ giác nội tiếp)
nên \(\widehat{BCA}=\widehat{ACF}\)
=>CA là phân giác của góc BCF
Tham khao
Bài 1: Cho nửa đường tròn (O) đường kính AB= 2R, dây cung AC. Gọi M là điểm chính giữa cung AC. Một đường thẳng kẻ từ điểm C song song với BM và cắt AM ở K , cắt OM ở D. OD cắt AC tại H.
1. Chứng minh CKMH là tứ giác nội tiếp.
2. CMR : CD = MB ; DM = CB.
3. Xác điểm C trên nửa đường tròn (O) để AD chính là tiếp tuyến của nửa đường tròn.
Bài 2: Cho ABC có 3 góc nhọn. Đường tròn có đường kính BC cắt hai cạnh AB, AC lần lượt tại các điểm E và F ; BF cắt EC tại H. Tia AH BC tại điểm N.
a) CMR: tứ giác HFCN là tứ giác nội tiếp.
b) CMR: FB là tia phân giác của góc EFN.
c) Nếu AH = BC. Hãy tìm số đo góc BAC trong ΔABC.
Bài 3: Cho nửa đường tròn tâm O và nó có đường kính AB. Từ một điểm M nằm trên tiếp tuyến Ax của nửa đường tròn, ta vẽ tiếp tuyến thứ hai tên gọi là MC (trong đó C là tiếp điểm). Từ C hạ CH vuông góc với AB, MB cắt (O) tại điểm Q và cắt CH tại điểm N. Gọi g I = MO ∩ AC. CMR:
a) Tứ giác AMQI là tứ giác nội tiếp.
b) Góc AQI = góc ACO
c) CN = NH.
(Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh)
Bài 4: Cho đường tròn (O) có đường kính là AB. Trên AB lấy một điểm D nằm ngoài đoạn thẳng AB và kẻ DC là tiếp tuyến của đường tròn (O) (với C là tiếp điểm). Gọi E là hình chiếu hạ từ A xuống đường thẳng CD và F là hình chiếu hạ từ D xuống AC.
Chứng minh:
a) Tứ giác EFDA là tứ giác nội tiếp.
b) AF là tia phân giác của góc EAD.
c) Tam giác EFA và BDC là hai tam giác đồng dạng.
d) Hai tam giác ACD và ABF có cùng diện tích với nhau.
(Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001)
Bài 5: Cho tam giác ABC (BAC < 45o) là tam giác nội tiếp trong nửa đường tròn tâm O có đường kính AB. Vẽ tiếp tuyến của đường tròn (O) tại C và gọi H là hình chiếu kẻ từ A đến tiếp tuyến . Đường thẳng AH cắt đường tròn (O) tại M (M ≠ A). Đường thẳng kẻ từ M vuông góc với AC cắt AC tại K và AB tại P.
a) CMR tứ giác MKCH là một tứ giác nội tiếp.
b) CMR: MAP là tam giác cân.
c) Hãy chỉ ra điều kiện của ΔABC để M, K, O cùng nằm trên một đường thẳng.
\(3,\\ A=\dfrac{1}{x^2-4x+9}=\dfrac{1}{\left(x-2\right)^2+5}\)
Vì \(\left(x-2\right)^2+5\ge5\Leftrightarrow A\le\dfrac{1}{5}\)
\(A_{max}=\dfrac{1}{5}\Leftrightarrow x=2\)
\(B=\dfrac{1}{x^2-6x+17}=\dfrac{1}{\left(x-3\right)^2+8}\)
Vì \(\left(x-3\right)^2+8\ge8\Leftrightarrow B\le\dfrac{1}{8}\)
\(B_{max}=\dfrac{1}{8}\Leftrightarrow x=3\)
GIÚP EM BÀI TẬP TOÁN 9VỚI Ạ .EM ĐANG KIỂM TRa.CỨU EM VỚI MỌI Người.!! Em xin cảm ơn rất nhiều luôn ạ
Câu 5:
\(x=\dfrac{6^2}{10}=3.6\left(cm\right)\)
y=10-3,6=6,4(cm)