Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì \(\left|a\right|=\left|-a\right|\)\(\Rightarrow\)\(\left|x-2020\right|=\left|2020-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)biểu thức P(x), ta có:
\(\left|2020-x\right|+\left|x+2021\right|\ge\left|2020-x+x+2021\right|=4041\)
\(\Rightarrow\)\(P\left(x\right)\ge4041\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(2020-x\right)\left(x+2021\right)>0\)
\(\Leftrightarrow-2021< x< 2020\)
Vậy \(P\left(x\right)_{min}=4041\)\(\Leftrightarrow\)\(-2021< x< 2020\)
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
Đa thức \(ax^3+bx^2+4\)chia cho đa thức \(x^2-1\)dư 2x + 5
Nên \(ax^3+bx^2+4-2x-5⋮x^2-1\)
hay \(ax^3+bx^2-2x-1⋮x^2-1\)
Áp dụng định lý Bezout:
1 và -1 là hai nghiệm của đa thức \(x^2-1\)nên \(\hept{\begin{cases}a+b-2-1=0\\-a+b+2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=3\\a-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
Vậy a = 2 ; b = 1
\(f\left(x\right)=ax^3+bx+c\)
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)
ghi lại đề được k ạ?
đúng rồi mà