Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt chung \(z=a+bi(a,b\in\mathbb{R})\)
Câu a)
\(2z^2+5|z|-3=0\Leftrightarrow 2(a^2-b^2+2abi)+5\sqrt{a^2+b^2}-3=0\)
\(\Rightarrow \left\{\begin{matrix} 4ab=0(1)\\ 2(a^2-b^2)+5\sqrt{a^2+b^2}-3=0(2)\end{matrix}\right.\)
Từ \((1)\Rightarrow \) \(a=0\) hoặc \(b=0\)
Nếu \(a=0\) thì từ \((2)\Rightarrow -2b^2+5|b|-3=0 \)
Xét \(b\geq 0,b<0\rightarrow \) \(\left[{}\begin{matrix}b=\dfrac{\pm3}{2}\\b=\pm1\end{matrix}\right.\)
Nếu \(b=0\) thì từ \((2)\Rightarrow 2a^2+5|a|-3=0\)
Xét \(a\geq 0,a<0\) thu được \(a=\pm\frac{1}{2}\)
Vậy \(z=\left \{\pm\frac{3i}{2};\pm i;\pm \frac{1}{2}\right\}\)
b) PT tương đương
\((a+bi)^2-4(a-bi)-11=0\Leftrightarrow a^2-b^2+2abi-4a+4bi-11=0\)
\(\Rightarrow \left\{\begin{matrix} a^2-b^2-4a-11=0(1)\\ 2ab+4b=0\rightarrow b(a+2)=0\end{matrix}\right.\)
Nếu \(b=0\) thay vào \((1)\Rightarrow a^2-4a-11=0\Leftrightarrow a=2\pm \sqrt{15}\)
Nếu \(a=-2\) thì \((2)\Rightarrow 1-b^2=0\rightarrow b=\pm 1\)
Vậy \(z\in\left \{2\pm \sqrt{15},-2\pm i\right\}\)
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
Lời giải:
a) Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos 2xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\frac{\sin 2x}{2}\end{matrix}\right.\)
\(\Rightarrow \int x\cos 2xdx=\frac{x\sin 2x}{2}-\int \frac{\sin 2x}{2}dx=\frac{x\sin 2x}{2}+\frac{\cos 2x}{4}\)
\(\Rightarrow \int ^{\frac{\pi}{2}}_{0}x\cos 2xdx=\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\left ( \frac{x\sin 2x}{2}+\frac{\cos 2x}{4} \right )=\frac{-1}{2}\)
b) Đặt \(\left\{\begin{matrix} u=x\\ dv=e^{-2x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\frac{-e^{-2x}}{2}\end{matrix}\right.\)
\(\Rightarrow \int xe^{-2x}dx=\frac{-xe^{-2x}}{2}+\int \frac{e^{-2x}}{2}dx=\frac{-xe^{-2x}}{2}-\frac{e^{-2x}}{4}\)
\(\Rightarrow \int ^{\ln 2}_{0}xe^{-2x}dx=\left.\begin{matrix} \ln 2\\ 0\end{matrix}\right|\left ( \frac{-xe^{-2x}}{2}-\frac{e^{2x}}{4} \right )=\frac{3}{16}-\frac{\ln 2}{8}\)
c)
\(\int ^{1}_{0}\ln (2x+1)dx=\frac{1}{2}\int ^{1}_{0}\ln (2x+1)d(2x+1)=\frac{1}{2}\int ^{3}_{1}\ln tdt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t\)
Do đó \(\frac{1}{2}\int ^{3}_{1}\ln tdt=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\left(\frac{t\ln t-t}{2}\right)=\frac{3\ln 3}{2}-1\)
d)
Ta có \(\int ^{3}_{2}(\ln (x-1)-\ln (x+1))dx=\int ^{3}_{2}\ln (x-1)d(x-1)-\int ^{3}_{2}\ln (x+1)d(x+1)\)
\(=\int ^{2}_{1}\ln tdt-\int ^{4}_{3}\ln tdt\)
Theo phần c, ta đã chỉ ra được \(\int \ln tdt=t\ln t-t\), do đó:
\(\int ^{2}_{1}\ln tdt-\int ^{4}_{3}\ln tdt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|(t\ln t-t)-\left.\begin{matrix} 4\\ 3\end{matrix}\right|(t\ln t-t)=\ln \left(\frac{27}{64}\right)\)
e)
Xét \(\int (x+1-\frac{1}{x})e^{x+\frac{1}{x}}dx=\int e^{x+\frac{1}{x}}dx+\int \left (x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx\)
Đặt \(\left\{\begin{matrix} u=e^{x+\frac{1}{x}}\\ dv=dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\left(1-\frac{1}{x^2}\right)e^{x+\frac{1}{x}}dx\\ v=x\end{matrix}\right.\)
\(\Rightarrow \int e^{x+\frac{1}{x}}dx=xe^{x+\frac{1}{x}}-\int \left(x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx\)
Do đó \(\int \left(x+1-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx=xe^{x+\frac{1}{x}}\)
\(\int ^{2}_{\frac{1}{2}}\left(x+1-\frac{x}{x}\right)e^{x+\frac{1}{x}}dx=\left.\begin{matrix} 2\\ \frac{1}{2}\end{matrix}\right|xe^{x+\frac{1}{x}}=\frac{3e^{\frac{5}{2}}}{2}\)
Câu 1:
Phương trình hoành độ giao điểm :
\(mx-\frac{x-2}{x-1}=0\Leftrightarrow mx^2-(m+1)x+2=0\)
Để 2 ĐTHS cắt nhau tại hai điểm phân biệt thì đương nhiên pt trên phải có hai nghiệm phân biệt
Do đó: \(\left\{\begin{matrix} m\neq 0\\ \Delta=(m+1)^2-8m>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m^2-6m+1>0\end{matrix}\right.\) (1)
Áp dụng hệ thức viete: \(\left\{\begin{matrix} x_1+x_2=\frac{m+1}{m}\\ x_1x_2=\frac{2}{m}\end{matrix}\right.\)
Dễ thấy , đồ thị \(y=\frac{x-2}{x-1}\) có TCĐ \(x=1\) và TCN $y=1$
Khi đó, để 2 giao điểm thuộc hai nhánh của nó thì:
\(x_1>1;x_2<1 \Rightarrow (x_1-1)(x_2-1)<0\)
\(\Leftrightarrow \frac{2}{m}-\frac{m+1}{m}+1<0\Leftrightarrow \frac{1}{m}<0\Leftrightarrow m< 0\)(2)
Từ \((1),(2)\Rightarrow m< 0\)
Đáp án D
Câu 15:
Gọi tọa độ cua $M$ là \((a,\frac{2a+1}{a-1})\)
Ta có \(y=\frac{2x+1}{x-1}\Rightarrow y'=\frac{-3}{(x-1)^2}\)
PT tiếp tuyến: \(y=\frac{-3}{(a-1)^2}(x-a)+\frac{2a+1}{a-1}\)
Dễ thấy hai tiệm cận của $(C)$ là 2 đường thẳng \(x=1;y=2\)
Do đó giao điểm $A,B$ của phương trình tiếp tuyến với hai tiệm cận (đứng và ngang) lần lượt là:
\(A(1;\frac{2a+4}{a-1});B(2a-1;2)\)
\(\Rightarrow AB=\sqrt{(2-2a)^2+(\frac{2a+4}{a-1}-2)^2}=2\sqrt{(a-1)^2+\frac{9}{(a-1)^2}}\)
Áp dụng BĐT Am-Gm: \((a-1)^2+\frac{9}{(a-1)^2}\geq 2\sqrt{9}=6\Rightarrow AB\geq 2\sqrt{6}\)
Đáp án C
Câu 16:
Vì đồ thị hàm số có 2 tiệm cận đứng là \(x=1;x=-1\) nên dễ dàng loại phương án A,B
Theo đồ thị, $y$ luôn nhận giá trị dương, do đó , loại phương án $D$
Vậy đáp án đúng là đáp án C
Lời giải:
Kẻ \(SH\perp AB\). Do \((SAB)\perp (ABCD)\Rightarrow SH\perp (ABCD)\)
Tam giác $SAB$ đều có đường cao $SH$ nên dễ tính \(SH=\frac{\sqrt{3}a}{2}\)
Kẻ \(HK\perp AD\)
Khi đó, \(\angle ((SAC),(ABCD))=\angle (HK,SK)=\angle HKS=60^0\)
\(\Rightarrow \frac{HK}{HS}=\cot 30^0=\sqrt{3}\Rightarrow HK=\sqrt{3}SH=\frac{3}{2}a\)
Tam giác vuông tại $K$ là $HAK$ có cạnh huyền \(AH=\frac{1}{2}a< HK\) nên bài toán vô lý.