Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B+C=\(X^2\)YZ+X\(Y^2\)Z+XY\(Z^2\)=XXYZ+XYYZ+XYZZ=(X+Y+Z)XYZ
MÀ XYZ=1=>A+B+C=(X+Y+Z)*1=X+Y+Z
ta có A+B+C=x2yz+xy2z+xyz2
=x(xyz)+y(xyz)+z(xyz)
=x.1+y.1+z.1
=x+y+z(dpcm)
\(A=x^2yz=x.\left(xyz\right)=x.1=x\)
\(B=xy^2z=y.\left(xyz\right)=y.1=y\)
\(C=xyz^2=z.\left(xyz\right)=z.1=z\)
\(\Rightarrow A+B+C=x+y+z\)
Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)
A=x^2yz
B=xy^2z
C=xyz^2
=>A+B+C=x^2yz+xy^2z+xyz^2=xyz(x+y+z)=xyz
\(A+B+C=xyz\)
\(VT=A+B+C\)
\(\Leftrightarrow VT=x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow VT=xyz\left(x+y+z\right)\)
\(\Leftrightarrow VT=xyz\)
\(\Rightarrow VT=VP\)
\(\Rightarrow A+B+C=xyz\left(dpcm\right)\)
Ta có:
\(A+B+C=x^2yz+xy^2z+xyz^2\\ A+B+C=xyz\left(x+y+z\right)\\ A+B+C=xyz\times1\\ A+B+C=xyz\)
Vậy A+B+C=xyz
Đợi tí nhé, đừng off, mk giải ra ròi, mình sẽ chép lên cho bạn
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927