Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2E=1+\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2003}}\)
2E-E=1-\(\frac{1}{2^{2004}}\)
E=\(\frac{1}{2^{2004}}\)
Ủng hộ mk nha
\(\dfrac{2}{3}+\dfrac{1}{3}:x=\dfrac{1}{2}\)
\(\dfrac{1}{3}:x=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\dfrac{1}{3}:x=-\dfrac{1}{6}\)
\(x=\dfrac{1}{3}:\left(-\dfrac{1}{6}\right)\)
\(x=-2\)
Vậy ...
#AvoidMe
Là \(\left(\dfrac{1}{2}\right)^2\) hay \(\dfrac{1}{2^2}\) vậy bạn
Những cái sau tương tự
(1 + 2 + 3 + ... + 31 + 32) : 11 + 2
= [(32 + 1).(32 - 1 + 1) : 2] : 11 + 2
= (33 . 32 : 2) : 11 + 2
= 33 . 16 : 11 + 2
= 3 . 16 + 2
= 48 + 2
= 50
(2011x2012+2012x2013)x(1+\(\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\))
= A x(1+\(\frac{1}{3}-1\frac{1}{3}\))
=A x(\(\frac{4}{3}-1\frac{1}{3}\))
= A x 0
=0
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{7}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{15}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{31}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\Rightarrow64A=32+16+8+4+2+1\Rightarrow64A=63\Rightarrow A=\frac{63}{64}\)
\(C=2+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{1}+\dfrac{1}{2}\)
\(=2+\left(\dfrac{1}{1}+\dfrac{1}{1}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(=2+\left(1+1\right)+1\)
\(=2+2+1\)
= 5