Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì a//b và a⊥AB nên b⊥AB
b, Vì a//b nên \(\widehat{CDB}=180^0-\widehat{ACD}=60^0\) (trong cùng phía)
Vì a//b nên \(\widehat{CDB}=\widehat{aCD}=60^0\) (so le trong)
dễ mà
a.a//b,a vuông góc với AB
=>b vuông góc với AB
b.Tính CDB bằng cách dựa vào tc góc trong cùng phía
tính aCD bằng cách dựa vào tc kề bù
1 \(-\)\(\frac{1}{3.5}\)\(-\)\(\frac{1}{5.7}\)\(-\)\(\frac{1}{7.9}\)\(-\)..... \(-\)\(\frac{1}{53.55}\)\(-\)\(\frac{1}{55.57}\)
= 1 \(-\)( \(\frac{1}{3.5}\) + \(\frac{1}{5.7}\) + \(\frac{1}{7.9}\) + ..... + \(\frac{1}{53.55}\) + \(\frac{1}{55.57}\) )
= 1 \(-\)( \(\frac{1}{3}\)\(-\)\(\frac{1}{5}\)+ \(\frac{1}{5}\)\(-\)\(\frac{1}{7}\)+ \(\frac{1}{7}\)\(-\)\(\frac{1}{9}\)+....+ \(\frac{1}{53}\)\(-\)\(\frac{1}{55}\)+ \(\frac{1}{55}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)
= 1 \(-\)( \(\frac{1}{3}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)
= 1 \(-\) \(\frac{6}{19}\). \(\frac{1}{2}\)= 1 \(-\)\(\frac{3}{19}\)= \(\frac{16}{19}\)
\(1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)
đặt \(A=1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)
\(A=1-\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{53.55}+\frac{1}{55.57}\)
\(2B=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
\(2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{53.55}+\frac{2}{55.57}\)
\(2B=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{55-53}{53.55}+\frac{57-55}{55.57}\)
\(2B=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+\frac{9}{7.9}-\frac{7}{7.9}+...+\frac{55}{53.55}-\frac{53}{53.55}+\frac{57}{55.57}-\frac{55}{55.57}\)
\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(2B=\frac{1}{3}-\frac{1}{57}\)
\(2B=\frac{54}{171}\)
\(\Rightarrow B=\frac{54}{171}:2\)
\(\Rightarrow B=\frac{9}{57}\)
mà \(A=1-B\)
\(\Rightarrow A=1-\frac{9}{57}\)
\(\Rightarrow A=\frac{48}{57}\)
chúc bạn học giỏi ^^
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
vì y tỉ lệ nghịch với x ⇒a=x.y=6.7=42 lại có y=\(\dfrac{a}{x}\) ⇒ khi x=7 thì y=a/x=42/3=14 vậy chọn C
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+c}{2+4}=\dfrac{120}{6}=20\)
Do đó: a=40; b=60; c=80