Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia:
(2a^2+a-7):(x-2) được dư là 3
Để 2a^2+a-7 chia hết cho a-2
thì 3 chia hết cho a-2
=>a-2€Ư(3)
=>a-2=1<=>a=3(nhận)
a-2=-1<=>a=1(nhận)
a-2=3<=>a=5(nhận)
a-2=-3<=>a=-1(nhận)
Vây, a€{3;1;5;-1} để (2a^2+a-7)chia hết cho (a-2) l
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
c/ △ABC có: BD, CE là các đường cao và BD, CE cắt nhau tại H.
\(\Rightarrow\)AH là đường cao mà AH cắt BC tại Q \(\Rightarrow\)AH⊥BC tại Q.
△BEC∼△BQA (g-g) \(\Rightarrow\dfrac{BE}{BQ}=\dfrac{BC}{BA}\Rightarrow\dfrac{BE}{BC}=\dfrac{BQ}{BA}\)
\(\Rightarrow\)△BEQ∼△BCA (c-g-c) \(\Rightarrow\)\(\widehat{BQE}=\widehat{BAC}\) (1)
△BDC∼△AQC (g-g) \(\Rightarrow\dfrac{BC}{AC}=\dfrac{DC}{QC}\Rightarrow\dfrac{BC}{DC}=\dfrac{AC}{QC}\)
\(\Rightarrow\)△DQC∼△BCA (c-g-c) \(\Rightarrow\)\(\widehat{DQC}=\widehat{BAC}\) (2)
-Từ (1) và (2) suy ra: \(\widehat{BQE}=\widehat{DQC}\Rightarrow\widehat{AQE}=\widehat{AQD}\)
\(\Rightarrow\)QA là tia p/g của góc EQD
Câu 2:
Gọi số sách Nam mua được là x(sách)(Điều kiện: \(x\in Z^+\))
Số tập Nam mua được là: x+3(tập)
Theo đề, ta có phương trình:
\(12000x+5000\left(x+3\right)=83000\)
\(\Leftrightarrow12000x+5000x+15000=83000\)
\(\Leftrightarrow17000x=68000\)
hay x=4(thỏa ĐK)
Vậy: Bạn Nam mua được 4 quyển sách và 7 cuốn tập
\(25\left(x+y\right)^2-16\left(x-y\right)^2\)
\(=\left(5x+5y\right)^2-\left(4x-4y\right)^2\)
\(=\left(5x+5y+4x-4y\right)\left(5x+5y-4x+4y\right)\)
\(=\left(9x+y\right)\left(x+9y\right)\)
Câu 1:
a)2x-3=5
\(\leftrightarrow\)2x=5+3
\(\leftrightarrow\)2x=8
\(\leftrightarrow\)x=4
Vậy pt có tập nghiệm S={4}
b)(2x+1)(x-3)=0
\(\leftrightarrow\) 2x+1=0
Hoặc x-3=0
\(\leftrightarrow\)x=-1/2
x=3
Vậy pt có tập nghiệm S={-1/2;3}
d)3x-4=11
\(\leftrightarrow\)3x=11+4
\(\leftrightarrow\)3x=15
\(\leftrightarrow\)x=5
Vậy pt có tập nghiệm S={5}
e)(2x-3)(x+2)=0
\(\leftrightarrow\)2x-3=0
Hoặc x+2=0
\(\leftrightarrow\)x=3/2
hoặc x=-2
Vậy pt có tập nghiệm S={3/2;-2}
Câu 2:
a)2x-3<15
\(\leftrightarrow\)2x<15+3
\(\leftrightarrow\)2x<18
\(\leftrightarrow\)x<9
Vật bpt có tập nghiệm S={x|x<9}
c)5x-2<18
\(\leftrightarrow\)5x<20
\(\leftrightarrow\)x<4
Vậy bpt có tập nghiệm S={x|x<4}
Mấy bài phân số nhác gõ quá~
7B
8D
9D
10C
7:
AM là phân giác
=>BM/AB=CM/AC
=>BM/2=CM/3=(BM+CM)/(2+3)=8/5=1,6
=>BM=3,2cm; CM=4,8cm
5:
a: 2x+6=0
=>x+3=0
=>x=-3
b: (2x-4)(x+3)=0
=>2x-4=0 hoặc x+3=0
=>x=2 hoặc x=-3
c: 5x-7=0
=>5x=7
=>x=7/5
d: 2x(x-3)=0
=>x(x-3)=0
=>x=0 hoặc x-3=0
=>x=0 hoặc x=3
f: =>2x+4+3x-6=5x-1
=>-2=-1(vô lý)
=>PTVN
e: =>5(3x-3)+4(2x-5)=4*5*4=80
=>15x-15+8x-20=80
=>23x=115
=>x=5
c) \(=\left(4x-3\right)^2-\left(9x^2-4\right)\)
\(=16x^2-24x+9-9x^2+4=7x^2-24x+13\)
d) \(=\left(x^2-3x+2\right)\left(x+3\right)-\left(x^3-5x^2\right)\)
\(=x^3+3x^2-3x^2-9x+2x+6-x^3+5x^2\)
\(=5x^2-7x+6\)
c. (4x - 3)(4x - 3) - (3x + 2)(3x - 2)
= (4x - 3)2 - (9x2 - 4)
= 16x2 - 24x + 9 - 9x2 + 4
= 16x2 - 9x2 - 24x + 9 + 4
= 7x2 - 24x + 13
d. (x - 2)(x - 1)(x + 3) - x2(x - 5)
= (x2 - 1 - 2x + 2)(x + 3) - x2(x - 5)
= x3 + 3x2 - x - 3 - 2x2 - 6x + 2x + 6 - x3 + 5
= x3 - x3 + 3x2 - 2x2 - x - 6x + 2x + 6 + 5 - 3
= x2 - 5x + 8
a, ta có A(x)=2x3+7x2+ax+b
=(2x3+2x2+2x)+(5x2+5x+5)+ax-7x+b-5
=2x(x2+x+1)+5(x2+x+1)+(a-7)x+(b-5)
=(x2+x+1)(2x+5)+(a-7)x+(b-5)
ta có: (x2+x+1)(2x+5)⋮B(x)
→để A(x)⋮B(x) thì (a-7)x+(b-5)=0
→\(\left\{{}\begin{matrix}a-7=0\\b-5=0\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\)
vậy ....
mk trình bày hơi tắt xíu
bn cố gắng dịch nhé
c nào bn
Bài 4. c)
\(P\left(x\right)=x^3+3x^2+mx+8\) chia hết cho \(x+4\) suy ra \(P\left(-4\right)=0\)
khi đó \(\left(-4\right)^3+3.\left(-4\right)^2+m.\left(-4\right)+8=0\Leftrightarrow m=-2\).