K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)

10 tháng 11 2021

cảm ơn bạn minh nhiều nha

17 tháng 4 2022

\(\left|2x-3\right|=3-2x\)

\(ĐK:x\le\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)

Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)

28 tháng 10 2021

\(3x\left(5x+1\right)\)

10 tháng 10 2021

\(1,\\ a,\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow\left(x-7\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ d,\Leftrightarrow\left(2x+3\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\\ 2,\\ a,\Leftrightarrow\left(x+5\right)^2=0\Leftrightarrow x=-5\\ b,\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ c,\Leftrightarrow\left(x-9\right)^2=0\Leftrightarrow x=9\\ d,\Leftrightarrow\left(x-3\right)^3=0\Leftrightarrow x=3\\ e,\Leftrightarrow3x\left(x^2-2x+3\right)=0\\ \Leftrightarrow3x\left(x^2-2x+1+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2+2=0\left(vô.nghiệm\right)\end{matrix}\right.\\ \Leftrightarrow x=0\)

\(f,\Leftrightarrow3x\left(x^2-4x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

10 tháng 10 2021

Bài 1:

a) \(\Rightarrow\left(x-5\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

b) \(\Rightarrow3x\left(x-4\right)-\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-7\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow\left(x+5\right)^2=0\Rightarrow x=-5\)

b) \(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

c) \(\Rightarrow\left(x-9\right)^2=0\Rightarrow x=9\)

d) \(\Rightarrow\left(x-3\right)^3=0\Rightarrow x=3\)

e) \(\Rightarrow3x\left(x^2-6x+9\right)=0\)

\(\Rightarrow3x\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

f) \(\Rightarrow3x\left(x^2-4x+4\right)=0\)

\(\Rightarrow3x\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

17 tháng 9 2021

b)\(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

\(=\left(3x-6xy\right)\left(x+3y\right)\)

c)\(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

17 tháng 9 2021

Bài 1: 

b. \(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

= (3x - 6xy)(x + 3y)

= 3x(1 - 2y)(x + 3y)

c. \(x\left(x+y\right)-5x-5y\)

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

d. \(3\left(x-y\right)-5x\left(y-x\right)\)

= 3(x - y) + 5x(x - y)

= (3 + 5x)(x - y)

Bài 3:

a. x + 6x2 = 0

<=> x(1 + 6x) = 0

<=> \(\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b. 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c. 5x(x - 2) - (2 - x) = 0

<=> 5x(x - 2) + (x - 2) = 0

<=> (5x + 1)(x - 2) = 0

<=> \(\left[{}\begin{matrix}5x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{5}\\x=2\end{matrix}\right.\)

d. (x + 1) = (x + 1)2

<=> (x + 1) - (x + 1)2 = 0

<=> (1 - x - 1)(x + 1) = 0

<=> -x(x + 1) = 0

<=> \(\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

 

NM
3 tháng 9 2021

Mình làm 1 bài thôi nhé

Bài 5 

\(a.1-2y+y^2=\left(1-y\right)^2\)

\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)

\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)

\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)

3 tháng 9 2021

Bài 4 : 

a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)

b, bạn xem lại đề nhé 

c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)

d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)

9 tháng 10 2021

a) \(A=x^4+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(minA=3\Leftrightarrow x=-2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxC=7\Leftrightarrow x=2\)

d) \(D=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxD=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

Bài 15:

\(P=\dfrac{x+y-1}{x\left(x+y\right)}+\dfrac{x-y}{2xy}\cdot\dfrac{xy+y^2+xy-y^2}{x\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{x}\)

5:

Gọi khối lượng gạo bán được ngày 1 và ngày 2 lần lượt là a,b

Theo đề, ta có: a-b=560 và a+60=1,5b

=>a-b=560 và a-1,5b=-60

=>a=1800