K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

ĐKXĐ : \(x\ne0;x\ne\pm5\)

\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)(ko t/m ĐKXĐ)

Vậy phương trình vô nghiệm.

4 tháng 4 2020

errrrr

23 tháng 6 2019

ĐK: ...

c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)( ko t/m )

d) tương tự, ngại tính lắm

e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)

\(\Leftrightarrow4x^2-3x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)

3 tháng 6 2017
  1. Điều kiện \(\hept{\begin{cases}x\ne5\\x\ne-5\end{cases}}\)\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{\left(x-5\right)}{2x\left(x+5\right)}=\frac{x+25}{2\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow\frac{2\left(x+5\right)^2-\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow x^2+30x+25=x^2+25\Leftrightarrow x=0\)
  2. Điều Kiện : \(x\ne1\)\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)\(\Leftrightarrow x^2+x+1-3x=2x^2-2x\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)so sánh điều kiện có nghiệm phương trình là : \(x=-1\)
3 tháng 6 2017

\(\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\)tu giai ra de ma

18 tháng 3 2019

a,  (2x+5)mũ 2=(x+2) mũ 2

=.> (2x+5) mũ 2-(x+2) mũ 2=0

=> (2x+5+x+2)x(2x+5-x-2)=0

=>(3x+7)x(x+3)=0

=>3x+7=0 hoặc x+3=0

3x+7=0=>x=-7/3

x+3=0 =>x=-3

vậy x=-7/3 hoặc x=-3

hok tot

19 tháng 4 2020

a/ 12-3(x-2)=(x+2)(1-3x)+2x

\(\Leftrightarrow18-3x=-3x^2-3x+2\)

\(\Leftrightarrow3x^2=-16\left(vl\right)\)

=> phương trình vô nghiệm

b/\(\left(x+5\right)\left(x+2\right)\) =3(4x-2)+(x-5)

\(\Leftrightarrow x^2+3x+10=13x-11\)

\(\Leftrightarrow x^2-10x+21=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

c/\(\frac{x-5}{x^2-5x}-\frac{x-5}{2x^2-10x}=\frac{x+25}{2x^2-50}\)(x khác 0)

\(\Leftrightarrow\frac{x-5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x-5\right)}=\frac{x^2+25}{2x^2-50}\)

\(\frac{\Leftrightarrow1}{x}-\frac{1}{2x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{1}{2x}=\frac{x+25}{2x^2-50}\Leftrightarrow2x^2-50=2x^2+50x\)

\(\Leftrightarrow50x=-50\Leftrightarrow x=-1\)(tm)

d/4x2-1=(2x+1)(3x-5)

\(\Leftrightarrow4x^2-1=6x^2-7x-5\)

\(\Leftrightarrow2x^2-7x-4=0\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{1}{2}\end{matrix}\right.\)

e/ \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)