Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
Ta có:
\(\overline{abc}=100.a+10.b+c=n^2-1\) (1)
\(\overline{cba}=100.c+b.10+a=n^2-4n+4\) (2)
Lấy (1) trừ (2) ta được:
\(99\left(a-c\right)=4n-5\)
\(\Rightarrow4n-5⋮99\)
Vì \(100\le\overline{abc}\le999\) nên:
\(100\le n^2-1\le999\)
\(\Rightarrow101\le n^2\le1000\)
\(\Rightarrow11\le31\Rightarrow39\le4n-5\le119\)
Vì \(4n-5⋮99\Rightarrow4n-5=99\Rightarrow n=26\Rightarrow\overline{abc}=675\)
Vậy \(\overline{abc}=675\)
59007=3x13x17x89
b là tháng \(\Rightarrow b\le12\Rightarrow b=3\)
a là ngày => a={13;17} => c=89
tuổi long là
2002-1989=13 tuổi
Vậy long sinh ngày 17/03/1989
Nguyễn Ngọc Anh Minh, giải còn thiếu 1 trường hợp nhưng mình k cho bạn nhé:))
gọi \(x\) là độ dài cạnh hình vuông
\(\Rightarrow\) diện tích hình vuông ban đầu là \(x^2\)
đội dài cạnh hình vuông lúc sau là \(x+2\)
\(\Rightarrow\) diện tích hình vuông lúc sau là \(\left(x+2\right)^2\)
vì sau khi thay đổi thì diện tích hình vuông đó tăng thêm \(32m^2\) nên ta có phương trình
\(x^2+32=\left(x+2\right)^2\Leftrightarrow x^2+32=x^2+4x+4\)
\(\Leftrightarrow\) \(4x+4-32=0\Leftrightarrow4x-28=0\Leftrightarrow4x=28\)
\(\Leftrightarrow\) \(x=\dfrac{28}{4}=7\)
vậy diện tích lúc đầu của hình vuông là \(x^2=7^2=49\)\(m^2\)
Bài tui sai tiếp ak!
Tuấn Anh Phan Nguyễn a xóa giúp e zới! Nhất định hậu tạ!
Gọi thứ tự các ô trong dãy lần lượt là :
01;02;03;04;05;06;07 thì ta có:
01=04=07; 02=05 =176 ; 03=06=324;
Mà 01+02+03=1000 hay 01+176+324=1000
=>01+500=1000 => 01 = 500;
Số thích hợp để điền vào ô thứ nhất là 500...
B5
a)\(A=\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-1\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot0\cdot\left(1-\dfrac{2011}{2010}\right)\\ =0\)
b)
\(A=\dfrac{1946}{1986}=\dfrac{1986-40}{1986}=\dfrac{1986}{1986}-\dfrac{40}{1986}=1-\dfrac{40}{1986}\\ B=\dfrac{1968}{2008}=\dfrac{2008-40}{2008}=\dfrac{2008}{2008}-\dfrac{40}{2008}=1-\dfrac{40}{2008}\)
Vì \(\dfrac{40}{1986}>\dfrac{40}{2008}\) nên \(1-\dfrac{40}{1986}< 1-\dfrac{40}{2008}\) hay \(A< B\)
B6
a) Đề sai
Sửa lại:
\(B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
b)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}=\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\\ B< 1-\dfrac{1}{8}\\ B< \dfrac{7}{8}\left(1\right)\)
Mà \(\dfrac{7}{8}< 1\left(2\right)\)
Từ (1) và (2) ta có \(B< 1\)
1: \(A=2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+2^{100}\)
\(=7\left(2+...+2^{97}\right)+2^{100}\) chia 7 dư 2