Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
Vẽ hình ta thấy liền
BCA=180-100=800
Ta có tổng ba góc tronng 1 tam giác băng 180 độ nên
ADC+CAD+ACD=ABC+BCA+BAC=1800
Hay: 100+x+y=80+2x+y
100+x+y-80-2x+y=0
20-x=0=>x=20
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
A = ( 4x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
B = ( y - 5/2 )2 + 7/4 ≥ 7/4 > 0 ∀ x ( đpcm )
C = 2( x - 1/2 )2 + 3/2 ≥ 3/2 > 0 ∀ x ( đpcm )
D = ( 3x - 1 )2 + ( 5y + 1 )2 + 2 ≥ 2 > 0 ∀ x, y ( đpcm )
Trả lời:
a, \(A=16x^2+8x+3=\left(16x^2+8x+1\right)+2=\left(4x+1\right)^2+2\ge2>0\forall x\)
Dấu "=" xảy ra khi x = - 1/4
Vậy bt A luôn dương với mọi x.
b, \(B=y^2-5y+8=x^2-2.y.\frac{5}{2}+\frac{25}{4}+\frac{7}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall y\)
Dấu "=" xảy ra khi x = 5/2
Vậy bt B luôn dương với mọi y.
c,
\(C=2x^2-2x+2=2\left(x^2-x+1\right)=2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\)
\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}>0\forall x\)
Dấu "=" xảy ra khi x = 1/2
Vậy bt C luôn dương với mọi x.
d, \(D=9x^2-6x+25y^2+10y+4\)
\(=9x^2-6x+25y^2+10y+1+1+2\)
\(=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\)
\(=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2>0\forall x;y\)
Dấu "=" xảy ra khi x = 1/3; y = - 1/5
Vậy bt D luôn dương với mọi x;y